导航:首页 > 计算方法 > 数值计算方法

数值计算方法

发布时间:2022-01-10 19:53:39

㈠ 传统的数值计算方法包括哪些内容现在的数值计算方法包括哪些内容

随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。科学计算已用到科学技术和社会生活的各个领域中。
数值计算方法,是一种研究并解决数学问题的数值近似解方法, 是在计算机上使用的解数学问题的方法,简称计算方法。
在科学研究和工程技术中都要用到各种计算方法。 例如,在航天航空、地质勘探、汽车制造、桥梁设计、 天气预报和汉字字样设计中都有计算方法的踪影。
计算方法既有数学类课程中理论上的抽象性和严谨性,又有实用性和实验性的技术特征, 计算方法是一门理论性和实践性都很强的学科。 在70年代,大多数学校仅在数学系的计算数学专业和计算机系开设计算方法这门课程。 随着计算机技术的迅速发展和普及, 现在计算方法课程几乎已成为所有理工科学生的必修课程。
计算方法的计算对象是微积分,线性代数,常微分方程中的数学问题。 内容包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、 计算矩阵特征值和特征向量和常微分方程数值解等问题。

㈡ 数值计算方法课后答案石钟慈

addasdsaFJK.JFKLJK,MCNXZM,CNZ,MXCNXZCM,ZXNCM,ZNKLjdshad

㈢ 数值计算方法

1. 数值计算的结果是离散的,并且一定有误差,这是数值计算方法区别与解析法的主要特征。 2. 注重计算的稳定性。控制误差的增长势头,保证计算过程稳定是数值计算方法的核心任务之一。 3. 注重快捷的计算速度和高计算精度是数值计算的重要特征。 4. 注重构造性证明。 5.数值计算主要是运用MATLAB这个数学软件来解决实际的问题 6.数值计算主要是运用有限逼近的的思想来进行误差运算数值积分

㈣ 数值计算方法概述

在采矿工程中,数值模拟方法不仅能模拟岩体复杂的力学和结构特征,还能很方便地解决现场监测过程中需要大量人力、物力而无法完成的、现有力学理论不能求解的复杂形体问题,并对矿山岩体稳定性进行预测与预报。

关于岩土工程的数值分析方法,很多学者都作过系统综述[53,68,72],笔者只拟简单介绍。岩土工程数值分析方法,主要分为三大类,如图7-1所示。

图7-1 边坡工程数值分析方法

(1)连续介质数值分析方法

连续介质数值分析方法的理论基础是弹(塑)性力学。因此,在该类数值分析方法公式的推导过程中,需要满足基本方程和边界条件。只是在求解手段上,采用了不同于弹性力学的各种近似解法。这类数值分析方法包括有限差分法、有限单元法和边界单元法等,它适用于连续介质体的地下工程围岩与结构的应力分析和位移求解。

(2)非连续介质数值分析方法

非连续介质数值分析方法的理论基础是牛顿运动定律,它并不满足结构的位移连续条件,但是可以求出结构在平衡状态下的位移或者在不可能处于平衡状态时的破坏模式。此外,尽管结构不受位移连续的约束,但应满足给定的单元和交界面的本构定律。这类数值分析方法主要有离散单元法和不连续变形分析(DDA)。这些数值分析方法可用于分析节理岩体可能发生的不连续变形,如洞室围岩附近岩块的分离与滑落等。

(3)混合介质数值分析方法

混合介质数值分析方法是连续和不连续分析方法的耦合。在地下结构的某些区域(如洞室附近),围岩体由于开挖影响而发生块体的分离而不连续,在另外区域(如远离洞室),则岩体一般仍相互联系而处于连续状态。因此,考虑两种不同力学介质的耦合分析很必要。目前常见的耦合方法有有限元与离散元的耦合、边界元与离散元的耦合等。混合介质吸取连续介质和非连续介质两种数值分析方法中的优点,在可能发生不连续变形的岩体,采用非连续介质方法模拟,而远离洞室的岩体一般仍处于连续状态,可采用连续介质模型分析。

本章分别采用有限元强度折减法、有限元和离散元相结合的CDEM法、FLAC差分法,开展安家岭露天矿露天井工联合开采的数值模拟分析,研究露天开采和井工开采的相互作用及影响规律。

㈤ 求数值计算方法 第三版 李有法 朱建新 课后答案

数值计算方法如下:

1、有限元法:有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式。

借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数 形式,便构成不同的有限元方法。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元 上的近似解构成。

根据所采用的权函数和插值函数的不同 ,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合 同样构成不同的有限元计算格式。

2、多重网格方法:多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量。具有收敛速度快,精度高等优点。

多重网格法基本原理微分方程的误差分量可以分为两大类,一类是频率变化较缓慢的低频分量;另一类是频率高,摆动快的高频分量。

一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显着。高频分量和低频分量是相对的,与网格尺度有关,在细网格上被视为低频的分量,在粗网格上可能为高频分量。

多重网格方法作为一种快速计算方法,迭代求解由偏微分方程组离散以后组成的代数方程组,其基本原理在于一定的网格最容易消除波长与网格步长相对应的误差分量。

该方法采用不同尺度的网格,不同疏密的网格消除不同波长的误差分量,首先在细网格上采用迭代法,当收敛速度变缓慢时暗示误差已经光滑,则转移到较粗的网格上消除与该层网格上相对应的较易消除的那些误差分量,这样逐层进行下去直到消除各种误差分量,再逐层返回到细网格上。

3、有限差分方法:有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:

一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

4、有限体积法:有限体积法(Finite Volume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。

为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控 制体积中的守恒原理一样。

限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒。

而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。

有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值 ,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。

在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程 中不同的项采取不同的插值函数。

5、近似求解的误差估计方法:近似求解的误差估计方法共有三大类:单元余量法,通量投射法及外推法。

单元余量法广泛地用于以FEM离散的误差估计之中,它主要是估计精确算子的余量,而不是整套控制方程的全局误差。

这样就必须假定周围的单元误差并不相互耦合,误差计算采用逐节点算法进行。单元余量法的各种不同做法主要来自对单元误差方程的边界条件的不同处理办法。基于此,该方法能够有效处理局部的残余量,并能成功地用于网格优化程序。

通量投射法的基本原理来自一个很简单的事实:精确求解偏微分方程不可能有不连续的微分,而近似求解却可以存在微分的不连续,这样产生的误差即来自微分本身,即误差为系统的光滑求解与不光滑求解之差。该方法与单元余量法一样,对节点误差采用能量范数,故也能成功地用于网格优化程序。

单元余量法及通量投射法都局限于局部的误差计算(采用能量范数),误差方程的全局特性没有考虑。另外计算的可行性(指误差估计方程的计算时间应小于近似求解计算时间)不能在这两种方法中体现,因为获得的误差方程数量,阶数与流场控制方程相同。

外推是指采用后向数值误差估计思想由精确解推出近似解的误差值。各类文献中较多地采用Richardson外推方法来估计截断误差。无论是低阶还是高阶格式,随着网格的加密数值计算结果都会趋近于准确解。但由于计算机内存与计算时间的限制,实际上不能采用这种网格无限加密的办法。

6、多尺度计算方法:近年来发展的多尺度计算方法包括均匀化方法、非均匀化多尺度方法、以及小波数值均匀化方法、多尺度有限体积法、多尺度有限元法等。

该方法通过对单胞问题的求解,把细观尺度的信息映射到宏观尺度上,从而推导出宏观尺度上的均匀化等式,即可在宏观尺度上求解原问题。均匀化方法在很多科学和工程应用中取得了巨大成功,但这种方法建立在系数细观结构周期性假设的基础上,因此应用范围受到了很大限制。

鄂维南等提出的非均匀化多尺度方法,是构造多尺度计算方法的一般框架。该方法有两个重要的组成部分:基于宏观变量的整体宏观格式和由微观模型来估计缺少的宏观数据,多尺度问题的解通过这两部分共同得到。

该方法基于多分辨分析,在细尺度上建立原方程的离散算子,然后对离散算子进行小波变换,得到了大尺度上的数值均匀化算子。此方法在大尺度上解方程,大大地减小了计算时间。

该法在宏观尺度上进行网格剖分,然后通过在每个单元里求解细观尺度的方程(构造线性或者振荡的边界条件)来获得基函数。从而把细观尺度的信息反应到有限元法的基函数里,使宏观尺度的解包含了细观尺度的信息。但多尺度有限元方法在构造基函数时需要较大的计算量。

借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数 形式,便构成不同的有限元方法。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元 上的近似解构成。

根据所采用的权函数和插值函数的不同 ,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合 同样构成不同的有限元计算格式。

2、多重网格方法:多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量。具有收敛速度快,精度高等优点。

多重网格法基本原理微分方程的误差分量可以分为两大类,一类是频率变化较缓慢的低频分量;另一类是频率高,摆动快的高频分量。

一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显着。高频分量和低频分量是相对的,与网格尺度有关,在细网格上被视为低频的分量,在粗网格上可能为高频分量。

多重网格方法作为一种快速计算方法,迭代求解由偏微分方程组离散以后组成的代数方程组,其基本原理在于一定的网格最容易消除波长与网格步长相对应的误差分量。

该方法采用不同尺度的网格,不同疏密的网格消除不同波长的误差分量,首先在细网格上采用迭代法,当收敛速度变缓慢时暗示误差已经光滑,则转移到较粗的网格上消除与该层网格上相对应的较易消除的那些误差分量,这样逐层进行下去直到消除各种误差分量,再逐层返回到细网格上。

3、有限差分方法:有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:

一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

4、有限体积法:有限体积法(Finite Volume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。

为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控 制体积中的守恒原理一样。

限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒。

而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。

有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值 ,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。

在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程 中不同的项采取不同的插值函数。



5、近似求解的误差估计方法:近似求解的误差估计方法共有三大类:单元余量法,通量投射法及外推法。

单元余量法广泛地用于以FEM离散的误差估计之中,它主要是估计精确算子的余量,而不是整套控制方程的全局误差。

这样就必须假定周围的单元误差并不相互耦合,误差计算采用逐节点算法进行。单元余量法的各种不同做法主要来自对单元误差方程的边界条件的不同处理办法。基于此,该方法能够有效处理局部的残余量,并能成功地用于网格优化程序。

通量投射法的基本原理来自一个很简单的事实:精确求解偏微分方程不可能有不连续的微分,而近似求解却可以存在微分的不连续,这样产生的误差即来自微分本身,即误差为系统的光滑求解与不光滑求解之差。该方法与单元余量法一样,对节点误差采用能量范数,故也能成功地用于网格优化程序。

单元余量法及通量投射法都局限于局部的误差计算(采用能量范数),误差方程的全局特性没有考虑。另外计算的可行性(指误差估计方程的计算时间应小于近似求解计算时间)不能在这两种方法中体现,因为获得的误差方程数量,阶数与流场控制方程相同。

外推是指采用后向数值误差估计思想由精确解推出近似解的误差值。各类文献中较多地采用Richardson外推方法来估计截断误差。无论是低阶还是高阶格式,随着网格的加密数值计算结果都会趋近于准确解。但由于计算机内存与计算时间的限制,实际上不能采用这种网格无限加密的办法。

6、多尺度计算方法:近年来发展的多尺度计算方法包括均匀化方法、非均匀化多尺度方法、以及小波数值均匀化方法、多尺度有限体积法、多尺度有限元法等。

该方法通过对单胞问题的求解,把细观尺度的信息映射到宏观尺度上,从而推导出宏观尺度上的均匀化等式,即可在宏观尺度上求解原问题。均匀化方法在很多科学和工程应用中取得了巨大成功,但这种方法建立在系数细观结构周期性假设的基础上,因此应用范围受到了很大限制。

鄂维南等提出的非均匀化多尺度方法,是构造多尺度计算方法的一般框架。该方法有两个重要的组成部分:基于宏观变量的整体宏观格式和由微观模型来估计缺少的宏观数据,多尺度问题的解通过这两部分共同得到。

该方法基于多分辨分析,在细尺度上建立原方程的离散算子,然后对离散算子进行小波变换,得到了大尺度上的数值均匀化算子。此方法在大尺度上解方程,大大地减小了计算时间。

该法在宏观尺度上进行网格剖分,然后通过在每个单元里求解细观尺度的方程(构造线性或者振荡的边界条件)来获得基函数。从而把细观尺度的信息反应到有限元法的基函数里,使宏观尺度的解包含了细观尺度的信息。但多尺度有限元方法在构造基函数时需要较大的计算量。

㈥ 数值计算方法

数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。
一般地讲,数字信号处理涉及三个步骤:
⑴模数转换(A/D转换):把模拟信号变成数字信号,是一个对自变量和幅值同时进行离散化的过程,基本的理论保证是采样定理。
⑵数字信号处理(DSP):包括变换域分析(如频域变换)、数字滤波、识别、合成等。
⑶数模转换(D/A转换):把经过处理的数字信号还原为模拟信号。通常,这一步并不是必须的。 作为DSP的成功例子有很多,如医用CT断层成像扫描仪的发明。它是利用生物体的各个部位对X射线吸收率不同的现象,并利用各个方向扫描的投影数据再构造出检测体剖面图的仪器。这种仪器中fft(快速傅里叶变换)起到了快速计算的作用。以后相继研制出的还有:采用正电子的CT机和基于核磁共振的CT机等仪器,它们为医学领域作出了很大的贡献。
信号处理的目的是:削弱信号中的多余内容;滤出混杂的噪声和干扰;或者将信号变换成容易处理、传输、分析与识别的形式,以便后续的其它处理。

㈦ 数值计算法

6.1.2.1 边坡数值计算的安全系数确定

数值分析方法考虑岩土体应力应变关系,克服了极限平衡方法的缺点,为边坡稳定分析提供了较深入的概念。

目前,数值计算的失稳判据主要有两类:一是以数值计算不收敛作为失稳的标志;二是以广义塑性应变或者等效塑性应变从坡脚到坡顶贯通作为边坡破坏的标志。而用数值分析结果获取边坡安全系数也主要有两种方法:强度折减法、数值计算与极限平衡的耦合分析法。

(1)强度折减法:首先选取初始折减系数,将岩土体强度参数进行折减,将折减后的参数输入,进行数值计算,若程序收敛,则岩土体仍处于稳定状态,然后需要再增加折减系数,直到程序恰好不收敛,此时的折减系数即为稳定或安全系数。[52]

(2)数值计算与极限平衡的耦合分析法:首先采用数值分析法,计算边坡内的应力应变以及位移分布;然后将计算的应力分布结果,通过应力张量变换,求出指定滑动面上的应力分布;最后通过极限平衡方法求出与该滑动面对应的稳定性安全系数。[52]

6.1.2.2 边坡数值计算方法存在的问题剖析

应该指出,尽管近年来数值模拟方法和理论方面取得了显着的进展,但仍不能很好的适应岩土工程的复杂情况,其主要原因有两方面:(1)数学模型的不确定性。由于岩体力学性质千变万化(弹性、塑性、流变、应变硬化及应变软化等),且具有复杂的结构特性(岩体结构、岩体介质结构及地质结构等),不但至今对岩体的失稳或破坏还缺少可靠的判据或准则,而且工程开挖方法、开挖步序对围岩的力学状态(应力和应变)及稳定条件具有重大的影响,在某些情况下还起到决定性的作用,这使得目前对于数学模型的建立,尤其是本构模型的给定还带有相当程度的盲目性。(2)参数的不确定性。岩体的物理力学性质、初始地应力等参数多变,仅通过有限的现场调查和室内试验来获得参数输入信息,数据往往具有很大的离散性,很难全面反映岩体真实情况。

“数学模型给不准”和“输入参数给不准”的困难已成为岩体力学数值分析应用的“瓶颈”问题。事实上,无论数值分析技术多么发达,它们总只是某种手段,关键还是对岩体基本特性的认识。

㈧ 数值计算方法陈根永答案

12+4不要回家啊那个小时好多一样子了他的谢我就好意了他是我就这么时我不了他是的是你也跟

㈨ 数值计算方法题

显然Xn>0
Xn+ι=Xn/2+2/Xn>=2(Xn/2*2/Xn)=2
则该序列下界
Xn+ι-Xn=Xn/2+2/Xn--Xn=2/Xn-Xn/2=(4-Xn^2)/4<=0
综上所速该序列为单调减有下界序列

阅读全文

与数值计算方法相关的资料

热点内容
妇科外敷包使用方法 浏览:758
蒲公英根作用及食用方法 浏览:938
温州做月饼方法视频教程 浏览:366
windows开机显示内存不足解决方法 浏览:991
hlookup函数的使用方法及实例 浏览:322
脚生水泡怎么处理方法 浏览:545
治疗子宫小最有效方法 浏览:499
水质检测溶氧仪分析方法 浏览:268
除静电有什么好方法吗 浏览:281
快速缩阴方法千黛斯新浪知道 浏览:317
64位proe50安装方法 浏览:284
电路板11测量方法 浏览:83
如何通过买专利的方法给公司节税 浏览:27
大客厅锻炼方法 浏览:778
幼儿简单手工制作方法 浏览:634
片碱中氯酸盐分析方法 浏览:494
语文组教学方法探究 浏览:882
幼儿查铅用什么方法 浏览:586
幼儿手部锻炼方法图解 浏览:115
韩国人怎么炒牛肉的方法 浏览:535