㈠ 如何求分位数
四分位数(Quartile)是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。 第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。第三四分位数与第一四分位数的差距又称四分位距。
㈡ 四分位数怎么算
首先需要将n个数从小到大排列:
Q2为n个数组成的数列的中数(Median);
当n为奇数时,中数Q2将该数列分为数量相等的两组数,每组有 (n-1)/2 个数,Q1为第一组 (n-1)/2 个数的中数,Q3为为第二组(n-1)/2个数的中数;
当n为偶数时,中数Q2将该数列分为数量相等的两组数,每组有n/2数,Q1为第一组 n/2个数的中数,Q3为为第二组 n/2 个数的中数。
(2)箱线图四分位数的计算方法扩展阅读:
分位数是将总体的全部数据按大小顺序排列后,处于各等分位置的变量值。如果将全部数据分成相等的两部分,它就是中位数;如果分成四等分,就是四分位数;八等分就是八分位数等。
四分位数也称为四分位点,它是将全部数据分成相等的四部分,其中每部分包括25%的数据,处在各分位点的数值就是四分位数。
四分位数有三个,第一个四分位数就是通常所说的四分位数,称为下四分位数,第二个四分位数就是中位数,第三个四分位数称为上四分位数,分别用Q1、Q2、Q3表示 。
第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range,IQR)。
参考资料:四分位数_网络
㈢ 4分位数怎么求哪位大神可以给我详细说一下4分位数
首先确定四分位数的位置:
Q1的位置= (n+1) × 0.25
Q2的位置= (n+1) × 0.5
Q3的位置= (n+1) × 0.75
n表示项数
对于四分位数的确定,有不同的方法,另外一种方法基于N-1 基础。即:
Q1的位置=1+(n-1)x 0.25
Q2的位置=1+(n-1)x 0.5
Q3的位置=1+(n-1)x 0.75
相关算法:
将n个数从小到大排列:
Q2为n个数组成的数列的中数(Median);
当n为奇数时,中数Q2将该数列分为数量相等的两组数,每组有 (n-1)/2 个数,Q1为第一组 (n-1)/2 个数的中数,Q3为为第二组(n-1)/2个数的中数;
以上内容参考:网络-四分位数
㈣ 统计学四分位数计算公式是什么
四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。它是一组数据排序后处于25%和75%位置上的值。
四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。很显然,中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值(称为下四分位数)和处在75%位置上的数值(称为上四分位数)。
与中位数的计算方法类似,根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。与中位数不同的是,四分位数位置的确定方法有几种,每种方法得到的结果会有一定差异,但差异不会很大。
应用:
不论Q1,Q2,Q3的变异量数数值为何,均视为一个分界点,以此将总数分成四个相等部份,可以通过Q1,Q3比较,分析其数据变量的趋势。
四分位数在统计学中的箱线图绘制方面应用也很广泛。所谓箱线图就是 由一组数据5 个特征绘制的一个箱子和两条线段的图形,这种直观的箱线图不仅能反映出一组数据的分布特征,而且还可以进行多组数据的分析比较。这五个特征值,即数据的最大值、最小值、中位数和两个四分位数。
㈤ 四分位数是衡量中位数的重要指标么
四分位数是衡量中位数的重要指标,中间四分位数就是中位数。但是中位数是位置代表的数,不受极端值的影响,四分位数分为中间四分位数和上、下四分位数。
拓展资料
一、四分位数:
1.四分位数也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。它是一组数据排序后处于25%和75%位置上的值。
2.四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。很显然,中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值(称为下四分位数)和处在75%位置上的数值(称为上四分位数)。
3.四分位数的计算:
求中位数:将n个数据从小到大排序;计算中位数,若n为偶数,则中位数的位置为n/2、n/2+1,这两个位置上的数的均值即为中位数;若n为奇数,则中位数的位置为(n+1)/2,这个位置上的数即为中位数。
求下四分位数:(n+1)/4位置上的数。
求上四分位数:3(n+1)/4位置上的数。
4.与中位数不同的是,四分位数位置的确定方法有几种,每种方法得到的结果会有一定差异,但差异不会很大。
二、中位数:
1.在按大小顺序排列后的一组数据中,由于中位数的位置居中,因而它能反映这组数据的集中趋势和一般水平,因此,通常也把中位数作为这组数据的代表。
2.中位数算出来可避免极端数据,代表着数据总体的中等情况。如果总数个数是奇数的话,按从小到大的顺序,取中间的那个数。如果总数个数是偶数个的话,按从小到大的顺序,取中间那两个数的平均数。
㈥ 如何求统计学里的四分位间距
四分位距是一个结果变异性的量度,是统计学中分位数的一种,即把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。
四分位距的计算公式为IQR=Q3-Q1;即对一组按顺序排列的数据,上四分位值Q3与下四分位值Q1之间的差称为四分位距(IQR)。
四分位距通常用于:与总范围不同,四分位数范围的分解点为25%,因此通常优选总范围;IQR用于构建箱形图,概率分布的简单图形表示。
概念
第一四分位数(Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数(Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数(Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位距(InterQuartile Range, IQR)。
㈦ 10个数的四分位数怎么求
方法是:确定要排序的数字,把它列成一排,对这行数字进行排序,从小到大排序,构成新的一排,保留结果,要求的是四分位数中的第二四分位数,就是这排数字里的中位数。
继续求第一四分位数,要求第一四分位数,先把第二四分位数前的数字单独拿出来看。在被单独拿出1、2、3中求中位数,得到的中位数即为第一四分位数。这里的结果为:2,最后求第三四分位数。
四分位数
是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。它是一组数据排序后处于25%和75%位置上的值。四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。
㈧ 统计学中,四分位数怎么算
将n个数从小到大排列:
Q2为n个数组成的数列的中数(Median);
当n为奇数时,中数Q2将该数列分为数量相等的两组数,每组有 (n-1)/2 个数,Q1为第一组 (n-1)/2 个数的中数,Q3为为第二组(n-1)/2个数的中数;
当n为偶数时,中数Q2将该数列分为数量相等的两组数,每组有n/2数,Q1为第一组 n/2个数的中数,Q3为为第二组 n/2 个数的中数。
(8)箱线图四分位数的计算方法扩展阅读:
四分位数的应用:
1、与总范围不同,四分位数范围的分解点为25%,因此通常优选总范围。
2、IQR用于构建箱形图,概率分布的简单图形表示。
3、对于对称分布,IQR的一半等于中值绝对偏差(MAD)。
4、中位数是集中趋势的相应度量。
5、IQR可以用来识别异常值。
6、四分位数偏差或半四分位数范围被定义为IQR的一半。
㈨ 箱线图怎么分析
箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。
1.直观明了地识别数据批中的异常值
一批数据中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会带来不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。箱线图为我们提供了识别异常值的一个标准:异常值被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的值。虽然这种标准有点任意性,但它来源于经验判断,经验表明它在处理需要特别注意的数据方面表现不错。这与识别异常值的经典方法有些不同。众所周知,基于正态分布的3σ法则或z分数方法是以假定数据服从正态分布为前提的,但实际数据往往并不严格服从正态分布。它们判断异常值的标准是以计算数据批的均值和标准差为基础的,而均值和标准差的耐抗性极小,异常值本身会对它们产生较大影响,这样产生的异常值个数不会多于总数0.7%。显然,应用这种方法于非正态分布数据中判断异常值,其有效性是有限的。箱线图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;另一方面,箱线图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱线图识别异常值的结果比较客观。由此可见,箱线图在识别异常值方面有一定的优越性。
2.利用箱线图判断数据批的偏态和尾重
比较标准正态分布、不同自由度的t分布和非对称分布数据的箱线图的特征,可以发现:对于标准正态分布的大样本,只有 0.7%的值是异常值,中位数位于上下四分位数的中央,箱线图的方盒关于中位线对称。选取不同自由度的t分布的大样本,代表对称重尾分布,当t分布的自由度越小,尾部越重,就有越大的概率观察到异常值。以卡方分布作为非对称分布的例子进行分析,发现当卡方分布的自由度越小,异常值出现于一侧的概率越大,中位数也越偏离上下四分位数的中心位置,分布偏态性越强。异常值集中在较小值一侧,则分布呈现左偏态;;异常值集中在较大值一侧,则分布呈现右偏态。下表列出了几种分布的样本数据箱线图的特征(样本数据由SAS的随机数生成函数自动生成),验证了上述规律。这个规律揭示了数据批分布偏态和尾重的部分信息,尽管它们不能给出偏态和尾重程度的精确度量,但可作为我们粗略估计的依据。
3.利用箱线图比较几批数据的形状
同一数轴上,几批数据的箱线图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信息便昭然若揭。在一批数据中,哪几个数据点出类拔萃,哪些数据点表现不及一般,这些数据点放在同类其它群体中处于什么位置,可以通过比较各箱线图的异常值看出。各批数据的四分位距大小,正常值的分布是集中还是分散,观察各方盒和线段的长短便可明了。每批数据分布的偏态如何,分析中位线和异常值的位置也可估计出来。还有一些箱线图的变种,使数据批间的比较更加直观明白。例如有一种可变宽度的箱线图,使箱的宽度正比于批量的平方根,从而使批量大的数据批有面积大的箱,面积大的箱有适当的视觉效果。如果对同类群体的几批数据的箱线图进行比较,分析评价,便是常模参照解释方法的可视图示;如果把受测者数据批的箱线图与外在效标数据批的箱线图比较分析,便是效标参照解释的可视图示。箱线图结合这些分析方法用于质量管理、人事测评、探索性数据分析等统计分析活动中去,有助于分析过程的简便快捷,其作用显而易见。
㈩ 统计学四分位数怎么算
四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。你列出的这些数一共20个,分成四份就每份5个,Q1就是,从小到大第五个数,也就是1。Q2就是,第十个数也就是2。Q3就是第15个,也就是4。
四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。它是一组数据排序后处于25%和75%位置上的值。
四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。很显然,中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值(称为下四分位数)和处在75%位置上的数值(称为上四分位数)。
与中位数的计算方法类似,根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。与中位数不同的是,四分位数位置的确定方法有几种,每种方法得到的结果会有一定差异,但差异不会很大。
应用:
不论Q1,Q2,Q3的变异量数数值为何,均视为一个分界点,以此将总数分成四个相等部份,可以通过Q1,Q3比较,分析其数据变量的趋势。
四分位数在统计学中的箱线图绘制方面应用也很广泛。所谓箱线图就是 由一组数据5 个特征绘制的一个箱子和两条线段的图形,这种直观的箱线图不仅能反映出一组数据的分布特征,而且还可以进行多组数据的分析比较。这五个特征值,即数据的最大值、最小值、中位数和两个四分位数。