⑴ 简支梁弯矩的计算方法
基数级跨中弯距Mka:
Mka= (Md+Mf) × VZ/VJ+ΔMs/VJ -Ms
Mka= (Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms
=(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25 = 21279.736(kN·m)
简支梁就是两端支座仅提供竖向约束,而不提供转角约束的支撑结构。简支梁仅在两端受铰支座约束,主要承受正弯矩,一般为静定结构。体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力,受力简单,简支梁为力学简化模型。
(1)徐变计算方法扩展阅读:
一、简支梁特点
只有两端支撑在柱子上的梁,主要承受正弯矩,一般为静定结构。体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力,受力简单,简支梁为力学简化模型。
简支梁只是梁的简化模型的一种,还有悬臂梁。
悬臂梁为一端固定约束,另一端无约束。
将简支梁体加长并越过支点就成为外伸梁。
简支梁的支座的铰接可能是固定铰支座、滑动铰支座的。
二、弯矩图的绘制基础
1、熟悉单跨梁在各种荷载独立作用下的弯矩图特征:比如悬臂梁在一个集中荷载作用下.其弯矩图的特征是一个直角三角形;悬臂梁在均布荷载作用于全长上时,其弯矩图为一个曲边三角形等。单跨梁在一种荷载作用下的弯矩图。
2、杆件某段两端点弯矩值的确定杆件某段两端点弯矩值一般有下面三种情况:
(1)无铰梁段:一般要先算出粱段两端截面处的弯矩值。
(2)梁段中间有一个铰:因已知无外力偶矩的铰处弯矩为零,只须另算一处截面的弯矩即可。
(3)梁段中间有两个铰:这两铰处的弯矩都为零,可直接按简支梁弯矩图特征画出弯矩图。
⑵ 计算板单元收缩徐变时理论厚度怎么取值
以《公预规》为依据,讨论组合梁桥中桥面板不同理论厚度计算方法得到的收缩应变和徐变系数间的差别,提出了采用随时间变化理论厚度计算收缩徐变参数的方法。接着,以一座2×75 m连续组合梁桥为背景工程,建立有限元模型,针对不同桥面板混凝土理论厚度计算了结构收缩徐变引起的变形和应力。结论表明目前普遍应用的以施工铺装前截面计算桥面板混凝土理论厚度的方法得到的收缩徐变效应普遍偏大,但组合梁钢结构的部分计算结果偏于不安全。
⑶ 为什么桥博计算习惯把收缩徐变作为施工阶段计算
《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第一条规定:
预应力混凝土构件,预应力钢筋的张拉控制应力值σcon(对后张法构件为梁体内锚下应力)应符合以下规定:1、钢丝、钢铰线的张拉控制应力值σcon≤0.75fpk;2、精扎螺纹钢的张拉控制应力值σcon≤0.90fpk。(fpk指预应力钢筋抗拉强度标准值)
此外,预应力混凝土构件在正常使用极限状态计算中,应考虑由下列因素引起的预应力损失:
预应力钢筋与管道壁之间的摩擦 σl1
锚具变形、钢筋回缩和接缝压缩 σl2
预应力钢筋与台座之间的温差 σl3
混凝土的弹性压缩 σl4
预应力钢筋的应力松驰 σl5
混凝土的收缩和徐变 σl6
此外,尚应考虑预应力钢筋与锚口之间的摩擦、台座的弹性变形等因素引起的其它预应力损失。
当对构件进行超张拉或诗篇锚圈口损失时,钢筋中最大控制应力(千斤顶油泵上显示的值)对钢丝和钢铰线不应超过0.8fpk;对精扎螺纹钢筋不就超过0.95fpk。
⑷ 设计院给出的预拱度考虑收缩徐变了吗
1、需要计算的部位:主梁、横梁、桥面板;
2、主要荷载:结构重力、预应力、活载、日照温差;
3、计算项目: 主梁强度设计、验算;
横梁强度设计、验算;
桥面板强度设计、验算;
主梁变形计算、预拱度计算;
简支梁计算方法
主梁恒载内力:
按实际结构尺寸计算恒载集度,计算应力时将荷载作用在结构上直接计算,但应注意要根据按施工方法确定何种荷载作用在何种截面上。
主梁预应力内力:
简支梁属于静定结构,预应力只产生出内力,不产生二次力效应。
主梁活载内力:
纵向采用影响线加载求最不利内力;
横桥向采用横向分布系数考虑车列在横向最不利布置位置。
横梁内力计算:
利用横向分布影响线加载求最不利弯矩。
桥面板计算:
采用有效工作宽度方法考虑车轮荷载在桥面板上的分布;
内力计算要根据桥面板与两肋的刚度比,选取不同的修正系数。
主梁变位计算:
根据构件类型修正弹性模量和惯性矩,恒载按实际结构尺寸计算,但必须考虑收缩徐变作用,活载计算中不记冲击系数。
预拱度设置:
通常预拱度的大小,等于全部恒载和一半静活载所产生的竖向挠度值,也就是说应该在常遇荷载情况桥梁基本上接近直线状态。对于位于竖曲线上的桥梁,应视竖曲线的凸起(或凹下)情况,适当增减预拱度值,使峻工后的线形与竖曲线接近一致。
对于简支梁常用跨中点的预拱度作为失高,按二次抛物线甚至全梁的预拱度。
连续梁与刚构桥计算内容
1、需要计算的部位:主梁、横梁(如果采用多梁式截面)、桥面板;
2、主要荷载:结构重力、预应力、活载、收缩徐变内力、基础变位内力、日照或常年温差内力;
3、计算项目: 主梁强度设计、验算;
横梁强度设计、验算;
桥面强度设计、验算;
主梁变形计算、预拱度计算;
连续梁与刚构桥计算方法
主梁自重内力:
按实际结构尺寸计算恒载集度,将荷载作用在结构上,通过结构力学方法求解或通过有限元程序求解。
计算中必须按施工方法确定各种构件自重作用的体系、作用截面,必须按施工过程考虑结构体系转换。
主梁预应力内力:
1、先计算初弯矩,然后计算次内力,通常要考虑徐变、收缩,不均匀沉降引起的次内力;
2、等效荷载法,将预应力作为外荷载直接作用在结构上计算。
主梁活载内力:
纵桥向采用影响线加载求最不利内力,多梁式截面采用横向分布系数方法考虑车列横桥向的最不利布置位置。
箱形截面必须按薄壁杆件计算扭转、翘曲、畸变等箱梁效应。
横梁内力计算:
利用横向分布影响线加载求最不利弯矩。
桥面板计算:
采用有效工作宽度方法考虑车轮荷载在桥面板上的分布;
内力计算要根据桥面板与两肋的刚度比,选取不同的修正系数。
主梁变位计算:
根据构件类型及结构静定或超静定情况修正弹性模量和惯性矩,恒载按实际结构尺寸计算,但必须考虑收缩徐变作用,活载计算中不记冲击系数。
预拱度设置:
通常预拱度的大小,等于全部恒载和一半静活载所产生的竖向挠度值,也就是说应该在常遇荷载情况桥梁基本上接近直线状态。对于位于竖曲线上的桥梁,应视竖曲线的凸起(或凹下)情况,适当增减预拱度值,使峻工后的线形与竖曲线接近一致。
拱桥实用计算——计算内容
需要计算的部位:
主拱、拱上建筑;
组合体系拱:主拱圈、系梁、吊杆 ;
桁架拱:上下弦杆、斜杆;
主要荷载:
结构重力、预应力、活载、常年及日照温差、拱脚水平位移推力;
计算项目:
主拱强度设计、验算;
拱上建筑强度设计、验算;
系梁、吊杆强度设计、验算;
横梁、桥面板强度设计、验算;
主拱稳定性验算;
主拱变形计算、预拱度计算;
关键局部应力验算;
主拱内力调整计算;
拱桥实用计算——计算方法
合理拱轴线:
按照拱轴线的形状直接影响主拱截面内力大小、分布的原则选取拱轴线。尽可能降低由于荷载产生的弯矩值,使拱轴线与拱上各种荷载的压力线相吻合,也就是合理拱轴线。
有推力主拱自重内力:
无支架施工拱桥:按实际结构尺寸计算恒载集度,按施工方法确定各种荷载作用的体系与截面。
有支架施工拱桥:按一次落架计算,常采用弹性中心法。
有推力拱活载内力:
利用弹性中心法公式查表计算,利用影响线加载计算。多肋式主拱以及拱上建筑为排架的双曲拱必须考虑横向分布作用,箱形截面应作箱梁应力析。
有推力拱温差及拱脚水平位移内力:
利用弹性中心法公式查表计算,或利用有限元结构计算程序进行。
拱上建筑计算:
进行拱上建筑的计算时应该考虑联合作用的影响,否则是不安全的。
联合作用的计算必须与拱桥的施工程序相适应。若是在拱合拢后即拆架,然后再建拱上建筑,则拱与拱上建筑的自重及混凝土收缩影响的大部分仍有拱单独承受,只有后加的那部分恒载和活载及温度变化影响才由拱与拱上建筑共同承担;
如果拱架是在拱上建筑建成后才拆除,那么全部恒载和活载以及其它影响力可考虑都由拱与拱上建筑共同承受;
拱与拱上建筑的联合作用计算是解高次超静定问题,可以应用平面杆件系统程序进行计算。
组合体系拱桥恒载内力:
高次超静定结构必须采用有限元结构程序进行计算。
最优吊杆张拉力:通过吊杆张拉力和系梁内预应力大小的调整可以使主拱与系梁基本处于受压状态。
组合体系拱活载内力计算:
采用影响线加载计算包络图,拱肋也必须用横向分布系数考虑车列的偏载。
桁架拱桥计算:
桁架拱桥是高次超静定结构,横载、活载以及各种次内力均必须采用有限元结构分析程序计算。
活载计算必须考虑横向布系数。
纵向稳定验算:
细长比不大时纵向稳定性验算一般可表达为强度校核的形式,即将拱圈换算为相当长度的压杆,按平均轴向力计算,以强度校核形式控制稳定。
细长比较大时可以按临界力控制稳定。
横向稳定验算:
板拱或肋拱可近似用矩形等截面抛物线双铰拱,在均布竖向荷载作用下的横向稳定公式来计算临界轴向力。
有横向连接系的拱的横向稳定计算是一个较复杂的问题,通常可将拱成一个与拱轴等长的平面桁架,按组合压杆计算其稳定性。
主拱变形计算、预拱度计算:
一般验算拱顶挠度,拱顶挠度是由恒载和静活载(不记冲击力)产生的挠度,其值不超过跨径的1/800;当用平板挂车或履带车时,上述值可增加20%。当恒载和静活载产生的拱顶挠度不超过跨度的1/1600时,可以不设,预拱度的设置按照恒载加上1/2的活载进行计算。
关键部位局部应力验算:
对拱脚、拱肋与系梁连接处,吊杆的吊点,横梁与系梁连接处,均应进行局部应力分析。一般采用大型有限元程序结合模型试验进行。
主拱内力调整:
是指在不改变主拱截面的情况下采用各种方法来优化主拱的受力状态,主要的方法有:
1. 假载法调整悬链线拱的内力:当悬链线主拱某一控制截面的应力过大,而另一控制截面的应力有较大富余时,我们可调整拱轴线系数m,修正拱轴线;调整后的拱轴线即非恒载压力线,因此主拱截面在恒载作用下,即使不记入弹性压缩的影响,也要产生弯矩,用此弯矩来改善主拱截面的应力状态。
2、 临时铰法:修建主拱时,在拱顶和拱脚截面处设置铅板制作的临时铰,待成桥后将铰拆除。如果临时铰偏心安装则可能起到调整主拱内应力的作用,特别可消除混凝土收缩引起的附加内力。
3、用千斤顶调整内力:将千斤顶平放在拱顶预留的空洞内,利用千斤顶对两半拱缓缓施加推力,使两半拱即分开又抬升。由于千斤顶施力时,拱被抬升使拱架易于卸出;同时拱桥基础立即产生的变形影响亦可消除;而调整千斤顶施力点的位置和加力的大小,即可达到调整主拱应力的目的。
⑸ 预应力混凝土构件在俆变的作用下会产生向上的变形吗徐变变形的计算公式是怎样的
会,徐变变形可以用徐变系数乘以弹性变形来计算。
在低于0.5倍抗压强度时,可以认为是线性徐变,符合叠加原理,具体计算方法见相关教材(桥梁工程上有),徐变系数可以查《公路钢筋混凝土及预应力混凝土桥涵设计规范》(D62-2004)表6.2.7及附录F。
结构的各种规范均没有把徐变计算加进去,所以不管是结构还是桥梁,徐变只有《公预规》可以参考。
⑹ 混凝土徐变系数如何取值有计算公式
σc≤0.5fc ── 线性徐变,具有收敛性;
σc>0.5fc ── 非线性徐变,随时间、应力的增大呈现不稳定现象;
σc>0.8fc ── 砼变形加速,裂缝不断地出现、扩展直至破坏(非收敛性徐变)。
一般地, 混凝土长期抗压强度取(0.75~0.8)fc徐变系数:φ=εcr/εce= ECεcr/σ。
徐变是指在荷载维持不变的情况下,变形随时间增加而缓慢增加的现象。混凝土的徐变是其材料本身固有的时变特性,会导致混凝土结构受力和变形随着时间变化。
从而影响混凝土结构的受力性能以及长期变形性能,严重时会影响混凝土结构的使用性能,如对连续梁预拱度的影响、对预应力混凝土结构造成的预应力损失、满堂支架逐孔浇筑预应力混凝土连续梁和高速铁路桥梁的影响等。
(6)徐变计算方法扩展阅读
影响混凝土徐变性能的因素很多,如水泥种类、加荷龄期、凝结温度和应力等级等,对高性能混凝土而言,各种添加剂也会影响混凝土的徐变。
国内外对影响混凝土徐变的机理尚未形成统一认识,且对高性能混凝土徐变的试验研究比较少见。混凝土的徐变变形会随着加荷时间的增长而增加,但一般在五年达到极限值,大部分混凝土徐变在1~3年内完成。
徐变的优点:混凝土的徐变会显着影响结构或构件的受力性能。如局部应力集中可因徐变得到缓和,支座沉陷引起的应力及温度湿度力,也可由于徐变得到松弛,这对混凝土结构是有利的。
徐变的缺点:徐变使结构变形增大对结构不利的方面也不可忽视,如徐变可使受弯构件的挠度增大2~3倍,使长柱的附加偏心距增大,还会导致预应力构件的预应力损损失。
⑺ 板的配筋计算As计算公式
板的配筋计算As计算公式是AS=M/(0.87*fy),配筋是指为增强混凝土承载力而在混凝土中设置钢筋并进行设计、加工、配置的作业过程。自然环境下配筋高强高性能混凝土的收缩徐变呈现早期发展较快,后期发展缓慢的特点,这与混凝土收缩徐变发展规律相一致。
配筋混凝土的收缩徐变均小于素混凝土的收缩徐变。当配筋率较低时,其对收缩徐变的影响较小,在工程应用中,可以按素混凝土来对待;当配筋率较高时,其对收缩徐变的减小作用需进行具体的试验研究;通过对配筋混凝土的有限元分析以及和试验结果的对比可以得出,配筋混凝土的收缩应变分析中应考虑徐变的作用,忽略徐变的作用将对收缩应变产生较大的误差;配筋率的大小对徐变的影响也不同,配筋率越高,徐变越小,相同配筋条件下,不同加载龄期下混凝土徐变相近。