㈠ 传统的数值计算方法包括哪些内容现在的数值计算方法包括哪些内容
随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如计算物理、计算化学、计算生物学、计算地质学、计算气象学和计算材料学等,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。我们知道,计算能力是计算工具和计算方法的效率的乘积,提高计算方法的效率与提高计算机硬件的效率同样重要。科学计算已用到科学技术和社会生活的各个领域中。
数值计算方法,是一种研究并解决数学问题的数值近似解方法, 是在计算机上使用的解数学问题的方法,简称计算方法。
在科学研究和工程技术中都要用到各种计算方法。 例如,在航天航空、地质勘探、汽车制造、桥梁设计、 天气预报和汉字字样设计中都有计算方法的踪影。
计算方法既有数学类课程中理论上的抽象性和严谨性,又有实用性和实验性的技术特征, 计算方法是一门理论性和实践性都很强的学科。 在70年代,大多数学校仅在数学系的计算数学专业和计算机系开设计算方法这门课程。 随着计算机技术的迅速发展和普及, 现在计算方法课程几乎已成为所有理工科学生的必修课程。
计算方法的计算对象是微积分,线性代数,常微分方程中的数学问题。 内容包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、 计算矩阵特征值和特征向量和常微分方程数值解等问题。
㈡ 论述科学计算的发展历史与趋势
科学计算即是数值计算,科学计算是指应用计算机处理科学研究和工程技术中所遇到的数学计算。在现代科学和工程技术中,经常会遇到大量复杂的数学计算问题,这些问题用一般的计算工具来解决非常困难,而用计算机来处理却非常容易。
自然科学规律通常用各种类型的数学方程式表达,科学计算的目的就是寻找这些方程式的数值解。这种计算涉及庞大的运算量,简单的计算工具难以胜任。在计算机出现之前,科学研究和工程设计主要依靠实验或试验提供数据,计算仅处于辅助地位。计算机的迅速发展,使越来越多的复杂计算成为可能。利用计算机进行科学计算带来了巨大的经济效益,同时也使科学技术本身发生了根本变化:传统的科学技术只包括理论和试验两个组成部分,使用计算机后,计算已成为同等重要的第三个组成部分。
计算过程
主要包括建立数学模型、建立求解的计算方法和计算机实现三个阶段。
建立数学模型就是依据有关学科理论对所研究的对象确立一系列数量关系,即一套数学公式或方程式。复杂模型的合理简化是避免运算量过大的重要措施。数学模型一般包含连续变量,如微分方程、积分方程。它们不能在数字计算机上直接处理。为此,先把问题离散化,即把问题化为包含有限个未知数的离散形式(如有限代数方程组),然后寻找求解方法。计算机实现包括编制程序、调试、运算和分析结果等一系列步骤。软件技术的发展,为科学计算提供了合适的程序语言(如FORTRANALGOL)和其他软件工具,使工作效率和可靠性大为提高。
㈢ 乘法还有哪些不同的算法:计算方法的发展历程是怎样的
递推法、递归法、穷举法、贪心算法、分治法、动态规划法、迭代法、分枝界限法
㈣ 计算力学的发展史
近代力学的基本理论和基本方程在19世纪末20世纪初已基本完备了,后来的力学家大多致力于寻求各种具体问题的解。但由于许多力学问题相当复杂,很难获得解析解,用数值方法求解也遇到计算工作量过于庞大的困难。通常只能通过各种假设把问题简化到可以处理的程度,以得到某种近似的解答,或是借助于实验手段来谋求问题的解决。
第二次世界大战后不久,第一台电子计算机在美国出现,并在以后的20年里得到了迅速的发展。20世纪60年代出现了大型通用数字电子计算机,这种强大的计算工具的出现使复杂的数字运算不再成为障碍,为计算力学的形成奠定了物质基础。
与此同时,适用于计算机的各种数值方法,如矩阵运算、线性代数、数学规划等也得到相应的发展;椭圆型、抛物型和双曲型微分方程的差分格式和稳定性理论研究也相继取得进展。1960年,美国克拉夫首先提出了有限元法,为把连续体力学问题化作离散的力学模型开拓了宽广的途径。有限元法的物理实质是:把一个连续体近似地用有限个在节点处相连接的单元组成的组合体来代替,从而把连续体的分析转化为单元分析加上对这些单元组合的分析问题。
有限元法和计算机的结合,产生了巨大的威力,应用范围很快从简单的杆、板结构推广到复杂的空间组合结构,使过去不可能进行的一些大型复杂结构的静力分析变成了常规的计算,固体力学中的动力问题和各种非线性问题也有了各种相应的解决途径。
另一种有效的计算方法——有限差分方法也差不多同时在流体力学领域内得到新的发展,有代表性的工作是美国哈洛等人提出的一套计算方法,尤其是其中的质点网格法(即PIC方法)。这些方法往往来源于对实际问题所作的物理观察与考虑,然后再采用计算机作数值模拟,而不讲究数学上的严格论证。1963年哈洛和弗罗姆成功地用电子计算机解决了流体力学中有名的难题——卡门涡街的数值模拟。
无论是有限元法还是有限差分方法,它们的离散化概念都具有非常直观的意义,很容易被工程师们接受,而且在数学上又都有便于计算机处理的计算格式。计算力学就是在高速计算机产生的基础上,随着这些新的概念和方法的出现而形成的。计算力学也为实际工程项目开辟了优化设计的前景。过去,工程师们虽有追求最优化设计的愿望,但是力不从心;现在,由于有了强有力的结构分析方法和工具,便有条件研究改进设计的科学方法,逐步形成计算力学的一个重要分支——结构优化设计。计算力学在应用中也提出了不少理论问题,如稳定性分析、误差估计、收敛性等,吸引许多数学家去研究,从而推动了数值分析理论的发展。
㈤ 计算工具 发展历史
在电子式计算器诞生之前,人们就已经使用了机械式的设备来帮助人们计算,牵强一点的说,算盘和对数计算尺就是其中的一员。在阿波罗登月计划中,同类型的计算尺就被带到了月球轨道上去。
而之后,由复杂的齿轮和机械结构组成的机械式计算器成为了计算大量运算的首选,虽然有些更加复杂的机械计算机能够计算积分、平方和开平方根等运算。
但简单的,能够计算加减乘除的机械式计算器获得了大量的应用,它们很笨重、发出大量噪声、而且运算速度也极慢。除了办公室场景以外很少被家庭和个人所使用。
第一种真正意义上用于通用数值计算的电子计算机要追溯到1946年,ENIAC(电子数字积分和计算机)的诞生。它的诞生与战争密不可分。
正值二次世界大战,不管是计算大炮的炮弹飞行轨迹还是预判从飞机上抛射的炸弹、鱼雷落点都需要大量的数学计算。使用人工和机械计算所需要的人力、时间太过庞大以至于接近于不可能。为此,一种能够替代人工和机械计算器的电子设备被发明了出来,它就是ENIAC。
在ENIAC诞生的同时,计算机领域最具有代表性的BUG一词也应运而生ENIAC作为计算机的始祖,其每秒钟5000次加法运算的速度远超机械式计算器的速度1000倍以上,但为了实现这一点,需要近1.8万个电子管,总重27吨,占地170平方米左右。
很显然这并不适合每一个办公室和公司购买使用。面对这样的情况,面向实现通用功能的计算机和专门的计算功能的计算器开始分道扬镳,走上了不同的道路。
第一台全电子化的桌面计算器是1961年,来自英国的ANITA(A New Inspiration To Arithmetic/Accounting)。
它看起来和现在的台式计算器已经相差不多了。上面板上密密麻麻的按键可以同时设定一个数字的不同位,得出结果的时候也不需要按等号键,如果操作员十分熟练,使用这种键盘的速度将会非常快——当然,最终这种操作方式输给了更加直白的9个数字、四种运算和一个等号键的键盘。
ANITA虽好,但它内部仍然带有多个电子管。而首款全晶体管的计算器则是由日本索尼所制造。除了显示部分仍然采用了辉光管外,剩余的部分全部采用晶体管电路,这使得计算器的体积能够进一步减小。
真正能够揣进兜里的计算器历史,从惠普的HP-35开始。这款计算器的来历要回溯到HP的创始人Bill Hewlett与同事们的一次赌约“能否创造出一款能够放进衬衫口袋里的计算器”而结果便是这款强大的HP-35。
除了四则运算以外,该机还可运算三角函数和指数函数——这些功能也使得HP-35成为了第一款进入太空的便携式计算器,它在美国的太空实验室项目中成为了替代计算尺的太空计算工具。
在这个时候,虽然和现代的计算器区别已经不大了,但仍存在着一个决定性的差别即该机所采用的芯片并非为计算器所独特设计的。而第一台采用大规模集成电路的计算器,要等到1969年的夏普QT-8了。
而在那之后,计算器的进化便没有那么明显了——LCD液晶屏幕、太阳能电池板、可充电的电池和锂纽扣电池,随着科技水平的一次又一次的进步,计算器才能变成现在我们所看到的模样。
(5)计算方法发展扩展阅读
常见的计算器又有四类:
1、算术型计算器
可进行加、减、乘、除等简单的四则运算,又称简单计算器。一般都是实物计算器。
2、科学型计算器
可进行乘方、开方、指数、对数、三角函数、统计等方面的运算,又称函数计算器。 可以是软件,也可以是实物。
3、程序员计算器
专门为程序员设计的计算器, 主要特点是支持And, Or, Not, Xor: 最基本的与或非和异或操作, 移位操作 Lsh, Rsh:全称是Left Shift和Right Shift,也就是左移和右移操作。
4、统计计算器
为有统计要求的人员设计的设计的计算器, 可以是软件,也可以是实物。
㈥ 计算方式的发展
计算的历史渊远流长,是人类文明的重要组成部分。计算方式随着人类社会的不断进步而不断向前发展,从“手工计算”到“机械计算”,再到“电子计算”,其计算能力是不断增强的,并且每种计算方式都与其时代特点相吻合,在人类生产力水平低下的时期,计算需要以手工的方式来完成,之后,随着生产力的发展,工业时代的到来,机械计算逐步的代替了手工计算,差分器等的发明,机械技术的发展,推进计算进入了机械时代。当人类将电作为生产劳动的主要动力时,电子计算也就应运而生了。
总的来说,人类社会是在不断发展进步的,人类对计算的追求是越来越快,越来越精确有效,手工计算、机械计算已无法满足全部需要,当计算到达了电子方式之后,其计算的复杂程度已是人类自身所无法完成的,然而人类依然在追求、探索。随着科学工程技术的高速发展,对于计算技术提出了愈来愈高的要求,迫切需要处理大量二维和三维数据,如天气预报、核研究、结构工程以及一切包含大量矩阵运算的问题。通常的电子计算机的设计依据于冯诺依曼的基本原理,即以时间上串行结构来减少互连数目。因此“瓶颈”效应,时钟歪斜,互连带宽和交叉干扰等固有限制使计算机的容量和运算速度的发展受到限制。光计算具有内察并行处理特性,高速、高容量和无交叉干扰的特点,已经成为突破当今电子计算机局限性的最有效途径之一。而随着生物技术的不断发展,人类尝试着制造生物芯片,企图以生物芯片来实现类似人脑的计算,从而完成一些更为复杂的、非定量的计算。
㈦ 简化实用的计算方法为何在唐代晚期快速发展
唐的中晚期,由于朝廷权力的衰微和商业的发展,算学学校和京城的算学家们在工作上已没有多少起色,社会上的算学家们也已不太注意经典巨着的研究,而去寻找一些简化实用性计算的方法,使算筹的计算有了改进。这是下一个时代数学大发展的一个预兆。