1. 非等间隔插值方法有哪些个方法优缺点有没有matlab程序代码
插值可说是matlab的弱项了,实际数据的插值这4种方法的结果可都不怎么样,远远不能满足实际应用的需要啊。
2. 想问excel的不等间距数据如何用内插法变成等间距的
D1=1
D2=D1+2
下拉
复制,数值粘贴
3. matlab不等间隔插值
A=[1 0 0 4 0 5 0 9 0 0 8];
B=interp1(find(A),A(A~=0),1:length(A))
4. 财务管理中插值法怎么计算
插值法的原理及计算公式如下图,原理与相似三角形原理类似。看懂下图与公式,即使模糊或忘记了公式也可快速、准确地推导出来。
数学插值法称为“直线插入法”,原理是,如果a(I1,B1)和B(I2,B2)是两点,那么P(I,B)点在由上述两点确定的直线上。在工程中,I通常介于I1和I2之间,所以p介于a和B点之间,所以称为“线性插值”。
数学插值表明,P点反映的变量遵循ab线反映的线性关系。
上述公式很容易得到。A、 那么B和P是共线的
(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=通过变换得到的直线斜率。
(4)非等间隔插值计算方法扩展阅读:
内插法在财务管理中应用广泛,如在货币时间价值计算中,计算利率i,计算年限n;在债券估值中,计算债券到期收益率;在项目投资决策指标中,计算内部收益率,中级和CPA教材中没有给出插值原理,下面是一个例子来说明插值在财务管理中的应用。
在内含报酬率中的计算
内插法是计算内部收益率的常用方法,内部收益率是指投资项目的净现值等于零时的折现率,通过计算内部收益率,可以判断项目是否可行,如果计算出的内部收益率高于必要的收益率,则该方案是可行的。
5. 插值法如何计算
将你假设的数字代入,得到方程
(69.65-▲Z)/(250-291)=(▲Z-69)/(291-300)
等式变换,化简,得到(▲Z-69)*41=9*(69.65-▲Z)
所以解得▲Z=69.117
6. 线性插值法计算公式是什么
举个例子,已知x=1时y=3,x=3时y=9,那么x=2时用线性插值得到y就是3和9的算术平均数6。写成公式就是:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。
线性插值法:
线性插值是数学、计算机图形学等领域广泛使用的一种简单插值方法。
内插法又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。
线性插值法的应用:
线性插值经常用于补充表格中的间隔部分。假设一个表格列出了一个国家 1970年、1980年、1990年以及 2000年的人口,那么如果需要估计 1994年的人口的话,线性插值就是一种简便的方法。
两值之间的线性插值基本运算在计算机图形学中的应用非常普遍,以至于在计算机图形学领域的行话中人们将它称为lerp。所有当今计算机图形处理器的硬件中都集成了线性插值运算,并且经常用来组成更为复杂的运算:例如,可以通过三步线性插值完成一次双线性插值运算。由于这种运算成本较低,所以对于没有足够数量条目的光滑函数来说,它是实现精确快速查找表的一种非常好的方法。
7. 插值法公式
以下是我的个人观点:
首先你得分清楚插值和拟合这两个的区别,
拟合是指你做一条曲线或直线,使得你的数据点跟这条线的“误差”最小。注意,这个要求并不要求所有的数据点在我们的拟合曲线上。
插值是指你做一条曲线或直线完全经过这些点,就是说数据点一定都要在插值曲线上。
插值也有好多种:比如拉格朗日插值,分段插值,样条插值(样条插值要求你还要知道这些数据点的一阶导数)
我们知道两点确定一条直线(一次多项式),三点确定一条抛物线(二次多项式),试想一下有10个点是不是可以确定一个9次多项式(9次多项式里面还有一个常数项,就是10个未知数,我们有10个数据点,刚好可以求解)
(**)拉格朗日插值就是上面的这种插值。但是它就是把这些多项式系数重新表示了一下(就是不用去求上面所说的10个系数)。你求出这些系数后,只要将你想要的x的值往里一代,马上就得到你想要的函数值。但这种插值在头尾附近会出现一些不好的振荡现象(龙格现象)
(**)分段插值,还是按照上面的原则,比如说,我两个点两个点地确定一条直线(比如1,2点连起来,2,3点连起来),最后所有直线的集合(这时应当是一系列的折线)这个分段函数也是经过所有的数据点。当然你也可以三个点三个点地确定一条抛物线。用这一方面时,你要先确定你想要的x值在哪一个区间里,然后用这一区间的表达式来计算出函数值就可以了。本方法不会出现龙格现象
(***)样条插值,上面提到分段插值是一系列折线,折线使得不光滑,样条就是用其导数值,使得它们变光滑。
下面说计算方法吧!至于表达式,你如果理解了上面,你去找本“计算方法”或“数值计算”的书,上面都有表达式。应当不难。
另外你还可以借助于MATLAB这样的软件来计算。
比如你的原始数据是X,Y,你想要求y(x=5)的值
X=[2,6,10,14,18,22,26,30,34,38,41,42,45,49,53,57,61,65,69,73,77,81]; %自变量的值
Y=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]; %自变量相应的函数值
X0=5; %你想要的点的值
N=22; %这个是点的个数
Doc=2; %分段插值中你想用几个点插值
你可以用下面的语句得到y(x=5);
Y1=lagrange(X,Y,X0) %拉格朗日插值
Y2=interp1(X,Y,X0,'linear') %分段两点线性插值
Y2=interp1(X,Y,X0,'spline') %分段两点线性插值
可能说的不好,你如果想系统地学点,可能得看一下相关的书。
8. 插值法的原理是什么怎么计算
插值法原理:
数学内插法即“直线插入法”。
其原理是,若A(i1‚1)‚B(i2‚2)为两点,则点P(i‚)在上述两点确定的直线上。而工程上常用的为i在i1‚i2之间,从而P在点A、B之间,故称“直线内插法”。数学内插法说明点P反映的变量遵循直线AB反映的线性关系。上述公式易得。A、B、P三点共线,则(-1)(i-i1)=(2-1)(i2-i1)=直线斜率,变换即得所求。