❶ 初中求随机概率的方法
5个人里面选2个的一个排列,5*4/2=10
选出的2个人生肖为A,几率为(1/12)*(1/12)
其余3人为(1-1/12)*(1-1/12)*(1-1/12)
相乘就okay了
❷ 概率如何计算
定义事件和结果。概率是在一系列可能结果中一个或多个事件发生的可能性。因此,假设我们希望计算出把一个六面骰子掷出三的可能性。"掷出三"是一个事件,而我们知道六面骰子可以被掷出六个数字中的任何一个,因此其结果数为六。以下为另外两个例子能加深你的理解:
例1:随机选择一个星期中的一天,选出的一天是周末的可能性有多大?
"选出周末中的一天"是我们的事件,而结果数就是一个星期中的天数,即七。
例2:一个罐子中装有4个蓝色小石、5个红色小石和11个白色小石。如果随机从罐子中取出一块小石,这块小石是红色的可能性有多大?
"选出红色小石"是我们的事件,结果数是罐子中小石的总数,即20。
2
用事件数除以可能结果数。所得结果即为单一事件发生的概率。在掷骰子中掷出三的例子中,事件数为一(每一骰子中只有一个三),而结果数为六。则其概率为1 ÷ 6、1/6、.166或16.6%。以下为计算其他例子中的概率的方法:
例1:随机选择一个星期中的一天,选出的一天是周末的可能性有多大?
事件数为二(因为一个星期中有两天为周末),而结果数为七。则其概率为2 ÷ 7 = 2/7即.285或28.5%。
例2:一个罐子中装有4个蓝色小石、5个红色小石和11个白色小石。如果随机从罐子中取出一块小石,这块小石是红色的可能性有多大?
事件数为五(因为共有五块小石),而结果数为20。则其概率为5 ÷ 20 = 1/4即.25或25%。
❸ 求概率的常见方法有哪些,初中数学的
一、列表法求概率 1、列表法 用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。 2、列表法的应用场合 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
二、树状图法求概率 1、树状图法 就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。 2、运用树状图法求概率的条件 当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果 ,通常采用树状图法求概率。
三、利用频率估计概率 1、利用频率估计概率 在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。 2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。 3、随机数 在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。
❹ 写出求随机事件A的概率P(A)的各种方法(至少五种)
1、古典概型的话,是A发生的数量除以事情的总数量。
2、几何概型的话,可以是A的线段长度,区域面积,或者区域体积除以总长度,面积,体积。
3、第一个等号的右端应该在1-(不发生事件的交集)的概率,即1-(全部都不发生的概率),而不是1-(不发生事件的并集)的概率。
4、用随机变量X记事件A是否发生,若发生X=1,否则X=0。则X服从0-1分布。设x1.x2.....xn为样本,p{x=xi}=pxi次方*(1-p)(1-xi)次方,求似然函数,取对数,求导。
5、解:由条件概率公式可求P(B|A)=[P(AB)]/[P(A)]=1/4
例如:
P(AC)+P(BD)=?
P(A)=a/(a+b);
P(C|A)=(a-1)/(a-1+b);
P(AC)=P(A)P(C|A)=(a/(a+b))*(a-1)/(a-1+b)
p(B)=b/(a+b);
P(D|B)=(b-1)/(a+b-1)
P(BD)=(b/(a+b))*((b-1)/(a+b-1))
P(AC)+P(BD)=(a/(a+b))*(a-1)/(a-1+b)+(b/(a+b))*((b-1)/(a+b-1))
(4)初中随机概率计算方法扩展阅读:
对事件发生可能性大小的量化引入“概率”。独立重复试验总次数n,事件A发生的频数μ,事件A发生的频率Fn(A)=μ/n,A的频率Fn(A)有没有稳定值?如果有,就称频率μ/n的稳定值p为事件A发生的概率,记作P(A)=p(概率的统计定义)。
P(A)是客观的,而Fn(A)是依赖经验的。统计中有时也用n很大的时候的Fn(A)值当概率的近似值。
❺ 如何计算随机概率
概率论,一个C上下个一个数字的算法:Cmn=m!/[n!*(m-n)!]
m在下,n在上n!代表n的阶乘=1*2*3*……*n。拓展资料:一、概率的严格定义:E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:
(1)非负性:对于每一个事件A,有P(A)≥0;
(2)规范性:对于必然事件S,有P(S)=1;
(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+..
二、概率论是研究随机性或不确定性等现象的数学。更精确地说,概率论是用来模拟实验在同一环境下会产生不同结果的情况。在自然界和人类社会中,存在大量的随机现象,而概率是衡量该现象发生的可能性的量度。
❻ 随机事件概率计算公式是什么
随机事件概率的计算公式为:C(n,m)*p^m*(1-p)^(n-m)。
其中事件的概率为p,n为随机事件,m为发生的次数,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中,具有某种规律性的事件叫做随机事件(简称事件)。
概率(旧称几率,又称机率、机会率或或然率)是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。

随机试验的数学描述:
试验E的全部结果(其中是基本结果的集合)⇔样本空间Ω(其中是样本点的集合)。
随机事件⇔Ω中的子集A。
事件A发生⇔A中样本点出现。
基本事件:由一个样本点构成的单点集{ω}。
必然事件:Ω(Ω⊂Ω)。
不可能事件:∅(空集∅⊂Ω)
❼ 初中数学中的概率怎么计算
您好。P(A)=A所含样本点数/总体所含样本点数。实用中经常采用“排列组合”的方法计算。
❽ 初中概率的计算方法
方法一:列举法
1. 列表:适用于一步概率计算
例1 一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为____.
2. 画树状(形)图:适用于两步及以上概率计算
例2 在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()
二、方法二:频率估计概率
例3 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:
估计该种幼树在此条件下移植成活的概率为____.
三、方法三:几何面积概型
例4 如图所示的圆面图案是用相同半径的圆与圆弧构成的,若向圆面投掷飞镖,则飞镖落在黑色区域的概率为____.
应用:游戏公平性问题
例5 一只不透明的袋子中装有3个球,球上分别标有数字0,1,2,这些球除了数字外其余都相同.甲、乙两人玩摸球游戏,规则如下:先由甲随机摸出一个球(不放回),再由乙随机摸出一个球,两人摸出的球所标的数字之和为偶数时则甲胜,和为奇数时则乙胜.
(1)用画树状图或列表的方法列出所有等可能的结果;
(2)这样的游戏规则是否公平? 请说明理由.