⑴ 高中数学答题思维 联想方法 快
从最基本的概念入手,比如绝对值的概念…拿到概念后,你需要认真反复的揣摩,书读百遍,其意自现不是句空话。不要轻视那些概念,那都是数学家总结出的最具代表其性质的话
一提高认识,改变观念。数学运算能力培养是一个长期的过程,不是某个阶段的任务,我们要体会数学运算的意义以及运算在建构数学系统中的作用,明确运算是高中新课程内容设计的一条主线之一,用这种思想认识高中的数学对提高我们教师对运算重要性在教学中作用是很有帮助的,改变思想上的不足,认清提高运算能力的必要性和紧迫性,避免教师在教学过程中重分析,轻运算的现象是很有益的。
二加强课堂教学过程的设计,提高课堂教学效率。课堂是教学的主阵地,也是我们培养学生运算的主阵地,教师应充分把握住这个阵地。这就要求教师在备课时,认真处理,钻研教材,精选例题,对每个例题的作用与地位要有深刻的认识,在备例题时要对算法进行归纳和总结,充分揭示知识的内在联系,使学生弄懂弄通算法,算理,运算律。同时在课堂上,还应注意激发学生积极参与教学过程的意识和积极性,使学生形成一个严密的,完整的知识网络。教学中不要致力于巧解巧法,忽视了通性通法的最常规训练,你要是注意了巧而忽视了巧存在的特定环境及必须注意的问题,学生就会一知半解,解题时漏洞百出。每节课争取有一道题写出它的规范的解题过程(包括变形,运算过程)。
⑶ 初中数学常用的几种经典解题方法
初中数学里常用的几种经典解题方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法
⑷ 数学计算的一些技巧和公式
你这个问题问的很有难度啊,说实话。
我归纳总结了一下有点小技巧,但是不多,公式没有现成的,靠灵活。
1.加减乘除法则。就是遇到不会做的代数题目,首先想想能不能通过添加一项,减去一项,乘上一个系数,除以一个系数简化运算,例如常见的+1然后再-1的方法;
2.换元法则,遇到复杂的题目,想想能否换元,比如说,常用的换元有三角函数代换法,就是看能不能换成极坐标下或者正切余切;整体代换,就是将根号下的数作为一个元;活着就是局部换元,比如换成倒数、换成平方,这需要很多的灵活性;
3.图形方法,将复杂的问题用图形表示出来会清晰很多。
总的来说,数学计算,靠经验和思维,真正的技巧也是通过大量的训练得到的,说什么万能方法,倒是没听过,所以希望你能多做点题目。
⑸ 数学联想法的例子。。。
五年级刚接触小数简算会出现以下问题,如2.5*(40+4),很多孩子机械地认为就是用2.5乘40再加4就对了,除了从概念上让孩子理解题目中有44个2.5,现在把44个2.5拆开,分解成40个2.5加4个2.5之外,还可以用联想法,2.5是题目中唯一一个括号外的数,为什么在括号外因为它重要,重要的人需要至少用两次,就是2.5先和40相乘再和4相乘,这样就不会少乘了。
⑹ 初中数学基本猜想方法是啥
初中数学学习方法
一、学会学习
五要:1、围绕老师讲述展开联想;2、理清教材文字叙述思路;3、听出教师讲述的重点难点;4、跨越听课的学习障碍,不受干扰;5、在理解基础上扼要笔记。
五先:1、先预习后听课;2、先尝试回忆后看书;3、先看书后做作业;4、先理解后记忆;5、先知识整理后入眠。
五会:1、会制定学习计划;2、会利用时间充分学习;3、会进行学习小结;4、会提出问题讨论学习;5、会阅读参考资料扩展学习。
二、学习数学应注意培养什么样的能力
1运算能力。2空间想象能力。3逻辑思维能力。4将实际问题抽象为数学问题的能力。5形数结合互相转化的能力。6观察、实验、比较、猜想、归纳问题的能力。7研究、探讨问题的能力和创新能力。
三、掌握预习学习方法,培养数学自学能力
预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节。
数学的预习主要是看数学书,这需要我们既要动脑思考,还要动手练习。数学预习可以有“一划、二批、三试、四分”的预习方法。
以“方程和它的解”一节为例来说明这种预习方法。“一划”就是圈划知识要点,和“已知数”、“未知数”、“方程的解”、“解方程”几个基本概念,以及例1、例2下面“注意”提示内容都要圈画出来。“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方,对例1中判定y2+2=4y-1与2x2+5x+8是否是方程,为什么?说不出理由,这时我们可以把疑问批在此二题旁。“三试”就是尝试性地做一些简单的练习,检验自己预习的效果。“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。例如通过预习这节内容,我们可以列出以下知识要求:(1)什么是已知数,什么是未知数,什么是方程,什么是方程的解,什么是解方程。(2)会判别一个式是否是方程,(3)会列一元一次方程,(4)会检验一个数是否是某一个方程的解。
四、掌握课堂学习方法,提高课堂学习效果
课堂学习是学习过程中最基本,最重要的环节。数学课学习要坚持做到“五到”即耳到、眼到、口到、心到、手到。
耳到:就是在听课的过程中,既要听老师讲的知识重点和难点,又要听同学回答问题的内容,特别要注意听自己预习未看懂的问题。
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来。
口到:就是自己预习时没有掌握的,课堂上新生的疑问,都提出来,请教老师或同学。
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。数学课堂学习有时是掌握例题的解法,有时是学会运用公式,
关键是理解并能融汇贯通,灵活使用。例如,证明任意三角形的中位线等于底边的一半,老师讲了例题,启发同学们思考,许多同学联想到平行四边形的性质与平行线辅助线的作法,很快可以思考出下列四种证法:
对于老师讲的新概念,应抓住关键字眼,变换角度去理解。如命题“只有零和1的算术平方根是它本身”,可以改写为“如果一个数的算术平方根是它本身,那么这个数是零或1”。
手到:就是在听,看,思的同时,要适当地动手做一些笔记。
五、掌握练习方法,提高解答数学题的能力
数学的解答能力,主要通过实际的练习来提高。
数学练习应注意些什么问题呢?
1.端正态度,充分认识到数学练习的重要性。不论是预习练习,课堂练习,还是课后作业,复习练习,都不能只满足于找到解题方法,而不动手具体练习一练。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。
2.要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。
3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。
4.细观察、活运用、寻规律、成技巧。
例如下列一组一元一次方程练习,通过细致观察,会获巧解。
以上三题应精心观察去括号与去分母的技巧与注意事项。
以上两题要细心观察运用整体思想灵活变形,正确迅速解题。
本题若不观察,按常规解法势必繁冗,联想到方程根的概念,可获精巧解答。
又如下题,若大胆联想,活用公式,转具体为抽象,用字母代替数,则可得巧解。
已知:A=199301981×198101993,B=199301982×19810992,试比较A与B的大小。
解:设x=199301981,y=198101992
则:A=x(y+1)=xy+x,B=y(x+1)=xy+y
∵x>y,∴A>B.
六、掌握复习方法,提高数学综合能力。
复习巩固应注意掌握以下方法。
1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习,一定要克服不看书复习就做作业,做不起再翻书,把书当成工具书查阅的不良习惯。
2.广泛采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,这种方法既适用于平时复习更适用于单元复习、期中复习、期末复习和毕业复习。
综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成完整的知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,像华罗庚所说:“找另一条线索把旧东西重新贯穿起来”,形成完整的知识体系。
3.重视实际应用的复习方法。数学复习不能像文科复习主要靠背记,应通过“完成实际作业”来实现对数学的复习,教育家明确指出,在数学课程中“应当注意把知识的实际应用作为重要的复习方法”,例如复习一元二次方程可做以下四道题。
(1)方程3x2-5x+a=0的一根大于-2而小于0,另一根大于1而小于3。求实数a的取值范围。
(2)方程2mx2-4mx+3(m-1)=0有两个实数根,确定实数m的范围。
(3)方程x2+(m-2)x+5-m=0的两根都大于2,确定实数m的范围。
(4)已知三角形两边长a、b是方程2x2-mx+2=0的两根,且c边长为8,求实数m的范围。
通过练习,从正、侧、反面三种不同角度理解一元二次方程的知识,便于抓住本质强化记忆。正面复习一元二次方程的概念;用判别式讨论根的性质;根与系数关系公式,把一元二次方程用函数的知识去理解,侧面从二次函数的角度来解决有关方程与不等式的问题,经过尝试失误,找出错误原因和解决办法,从反面留下深刻印象。
4.广览博集,突破薄弱环节的复习方法。
要提高数学综合能力,还应突破自己知识的薄弱环节,一是多在薄弱环节上下功夫,加强巩固好课本知识,二是适当阅读这些课外读物,收集整理,广览博集,突破这一薄弱环节,这样,有利于从整体上提高数学综合能力。
七、掌握复习方法,提高数学综合能力。
复习巩固应注意掌握以下方法。
1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,要巩固复习,一定要克服不看书复习就做作业,把书当成工具书查阅的不良习惯。
2.广泛采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系。
综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成完整的知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固。
3.重视实际应用的复习方法。通过“完成实际作业”来实现对数学的复习,教育家明确指出,在数学课程中“应当注意把知识的实际应用作为重要的复习方法”,例如复习一元二次方程可做以下四道题。
(1)方程3x2-5x+a=0的一根大于-2而小于0,另一根大于1而小于3。求实数a的取值范围。
(2)方程2mx2-4mx+3(m-1)=0有两个实数根,确定实数m的范围。
(3)方程x2+(m-2)x+5-m=0的两根都大于2,确定实数m的范围。
(4)已知三角形两边长a、b是方程2x2-mx+2=0的两根,且c边长为8,求实数m的范围。
4.广览博集,突破薄弱环节的复习方法。
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
八、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
九、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
十、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
十一、学数学的几个建议。
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。
2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
3、记忆数学规律和数学小结论。
4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。
5、争做数学课外题,加大自学力度。
6、反复巩固,消灭前学后忘。
7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类
8、上课认真听讲是最关键的一环。
虽然老师会在复习时把课本过一遍,但内容已经大大简化,根本就无法和初次授课相比。有许多东西是老师在第一次讲,以后就不讲的东西。而且,在第一次讲时,老师往往会把知识的基本原理讲清楚。不但让你知其然而且让你知其所以然,只有弄清楚了知识的来龙去脉,才能把握问题的本质。比如,不少同学只知“整数和分数统称有理数”,但他并不知道为什么叫有理数,为什么不叫无理数。如果把有理数的来历弄清楚了,对有理数的理解肯定会清楚了许多。因此,认真听课,特别是认真听老师的新授课,是至关重要的一环。
9、及时背有关概念。
许多同学对背概念不感冒,这也难怪。因为许多同学至所以喜欢理科,就是因为少了许枯燥的背诵。但基本概念如果不掌握牢,往往会把许多相关的知识弄混。实际上,做题只不过是提高基本技能的手段,而我们学习的真正目的是掌握基本概念,基本原理。数年之后,可能你做过的题都忘光了,但你所学到的数学基本原理却会伴你终身。
10、养成良好的学习习惯。
①错题、难题、好题及时做标记。特别是对于计算上的失误,大部分学生认为,只不过是自己算错了而已,并不是自己不会。但考试的时候,老师是不会管你到底是哪儿错了。特别是填空和选择,错一点都是错,少个符号也是0分(别怪老师太黑!)所以,大家还是按照“计算错也是错”方针严格要求自己。
②备好、用好自己的“纠错本”和“精华本”。错题、难题、好题及时做标记还不能万事大吉,因为,对于大部分同学来说,那些错题、难题、好题都需要反复做三四遍才能真正掌握的(不排除一遍就能真正掌握的可能性,但这种学生为数不多,但部分学生都是“一听就懂,一看就会,一做就错”的那种)。因此,大部分同学都要把这些题整理到自己的纠错本和精华本上,隔一定时间就要复习一遍(千万不要自以为是)。
③及时复习。我们的大脑不是计算机的硬盘,遗忘是每一个人都不可避免的。根据遗忘规律,复习的间隔越短,记忆的效果越好。所以,希望大家养成及时复习的好习惯,这可能会节省你不少时间。
④提前预习。提前预习,上课听讲就会目标明确,重点突出。不但提高了自己的自学能力,还可以对照老师的思路检验自己思考问题的方式是否正确。特别是两个假期,如果两个多月的假期全玩过去,无疑是一种浪费。因此,建议大家能够在假期期间,把下期的内容提前学一遍。因为,对于学数学来说,第二遍的要比第一遍清晰得多,理解要深刻的多,所以效果要远好于第一遍。
⑤数学是一门基础学科,对于培养一个人的思维能力来说,有着其它学科不可替代的作用。因此,总会有人说,学数学的人或数学学得好的人总要聪明些,这与数学在培养人的思维能力方面的得天独厚的优势是分不开的。
⑥对于个别的学生来说,学习数学的能力是与生俱来的,也就是我们所说的天赋。但对于绝大部分学生来说,数学能力的培养是需要“汗水+方法”才能成功的。
⑺ 所有五年级数学加减乘除简便计算方法
一切简便运算都是以运算法则为基础的,很多时候就是法则的灵活运用。
比如517517乘以57+517517乘以43=517517乘以(57+43)=517517乘以100=51751700
当然你还需要知道2乘5=10;4乘25=100;8乘125=100;
⑻ 数学简便计算,有哪几种方法
简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。
它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。
就像68+77=?
大多数人不一定立刻能算出结果,
如果换成70+75=?
相信每一个人都可以一口算出和是145。
这里其实就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇见复杂的计算式时,
先观察有没有可能凑整,
凑成整十整百之后再进行计算,
不仅简便,而且避免计算出错。
①加减凑整
【例题1】999+99+29+9+4=?
题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例题2】5999+499+299+19=?
看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。
没有枪没有炮,自己去创造!
先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分组凑整
在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。
【例题3】100-95+92-89+86-83+80-77=?
题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。
根据加法减法运算性质,我们给相邻的项加上括号。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。
③提取公因数法
这就需要用到乘法分配律提取公因数,
又称为提取公因数法。
如果没有公因数,我们可以采取乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例题4】47.9x6.6+529x0.34=?
很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。
⑼ 数学计算技巧方法有哪些
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
加法
a、整数和小数:相同数位对齐,从低位加起,满十进一。
b、同分母分数:分母不变分子相加。异分母分数:先通分,再相加。
减法
a、整数和小数:相同数位对齐,从低位减起,哪一位不够减退一当十再减。
b、同分母分数:分母不变,分子相减。分母分数:先通分,再相减。
乘法
a、整数和小数:用乘数每一位上的数去乘被乘数用哪一-位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同。
b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分结果要化简。
除法
a、整数和小数:除数有几位先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐。
b、甲数除以乙数(0除外)等于甲数除以乙数的倒数。
⑽ 数字推理和数学运算的做题技巧
平常心去对待...
多读书..也别太死扳..