导航:首页 > 计算方法 > 简单线性回归分析的参数计算方法

简单线性回归分析的参数计算方法

发布时间:2022-07-17 16:25:17

① 回归直线方程的计算方法

要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中,

(1)简单线性回归分析的参数计算方法扩展阅读

回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。

离差作为表示Xi对应的回归直线纵坐标y与观察值Yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.

总离差不能用n个离差之和来表示,通常是用离差的平方和,即(Yi-a-bXi)^2计算。

② 线性回归方程b的公式求和符号怎么计算

一,计算各变量的平均值(算术平均值)

x_=(x1+x2+...+xi+...+xn)/n

y_=(y1+y2+...+yn)/n

二,计算两个∑

∑xiyi=x1y1+x2y2+...+xnyn

∑xi^2=x1^2++x2^2+...+xn^2

三,计算分子与分母

分子=(∑xiyi)-n*x_*y_

分母=(∑xi^2)-n*x_^2

四,计算b

b=分子÷分母

(2)简单线性回归分析的参数计算方法扩展阅读:

线性回归是线性模拟标量响应之间关系的方法(或因变量)和一个或多个解释变量(或自变量)。一个解释变量的情况称为简单线性回归...对于多个解释性变量,该过程称为多元线性回归。这个术语不同于多元线性回归,其中预测了多个相关的因变量,而不是单个标量变量。

在线性回归中,使用线性预测函数未知模型参数是估计值从数据...这样的模型被称为线性模型。最常见的情况是,条件均值对于给定的解释变量(或预测器)的值,则假定为仿射函数在这些值中;较不常见的是,有条件的中位或者其他的分位数被利用了。

就像所有形式的回归分析,线性回归集中在条件概率分布的值,而不是基于联合概率分布的所有变量,这是多元分析。

线性回归是第一种严格研究的回归分析方法,在实际应用中得到了广泛的应用。这是因为线性依赖于其未知参数的模型比与其参数具有非线性关系的模型更容易拟合,而且所得到的估计器的统计特性更容易确定。

③ 线性回归方程中的a,b怎么计算

b=(∑XiYi-nXoYo)/(∑Xi2-nXo2)。

a=Yo-bXo,说明:i(表示其通项1,2…,n),o(表示其平均值)为下脚标,2(表示其平方)为上脚标。

④ 线性回归法

在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。)
回归分析中有多个自变量:这里有一个原则问题,这些自变量的重要性,究竟谁是最重要,谁是比较重要,谁是不重要。所以,spss线性回归有一个和逐步判别分析的等价的设置。
原理:是F检验。spss中的操作是“分析”~“回归”~“线性”主对话框方法框中需先选定“逐步”方法~“选项”子对话框
如果是选择“用F检验的概率值”,越小代表这个变量越容易进入方程。原因是这个变量的F检验的概率小,说明它显着,也就是这个变量对回归方程的贡献越大,进一步说就是该变量被引入回归方程的资格越大。究其根本,就是零假设分水岭,例如要是把进入设为0.05,大于它说明接受零假设,这个变量对回归方程没有什么重要性,但是一旦小于0.05,说明,这个变量很重要应该引起注意。这个0.05就是进入回归方程的通行证。
下一步:“移除”选项:如果一个自变量F检验的P值也就是概率值大于移除中所设置的值,这个变量就要被移除回归方程。spss回归分析也就是把自变量作为一组待选的商品,高于这个价就不要,低于一个比这个价小一些的就买来。所以“移除”中的值要大于“进入”中的值,默认“进入”值为0.05,“移除”值为0.10
如果,使用“采用F值”作为判据,整个情况就颠倒了,“进入”值大于“移除”值,并且是自变量的进入值需要大于设定值才能进入回归方程。这里的原因就是F检验原理的计算公式。所以才有这样的差别。
结果:如同判别分析的逐步方法,表格中给出所有自变量进入回归方程情况。这个表格的标志是,第一列写着拟合步骤编号,第二列写着每步进入回归方程的编号,第三列写着从回归方程中剔除的自变量。第四列写着自变量引入或者剔除的判据,下面跟着一堆文字。

⑤ 回归方程怎么求参数

以此题为例讲解:以下是某地搜集到得新房屋的销售价格y和房屋的面积x的数据:
房屋面积115,110,80,135,105
销售价格:24.8 21.6 18.4 29.2 22
①求回归方程,并在散点图中加上回归直线; 回归方程 ^y = 1.8166 + 0.1962x
计算过程:
从散点图(题目有给吧)看出x和y呈线性相关,题中给出的一组数据就是相关变量x、y的总体中的一个样本,我们根据这组数据算出回归方程的两个参数,便可以得到样本回归直线,即与散点图上各点最相配合的直线。
下面是运用最小二乘法估计一元线性方程^y = a + bx的参数a和b:
(a为样本回归直线y的截距,它是样本回归直线通过纵轴的点的y坐标;b为样本回归直线的斜率,它表示当x增加一个单位时y的平均增加数量,b又称回归系数)
首先列表求出解题需要的数据
n 1 2 3 4 5 ∑(求和)
房屋面积 x 115 110 80 135 105 545
销售价格 y 24.8 21.6 18.4 29.2 22 116
x^2(x的平方) 13225 12100 6400 18225 11025 60975
y^2(y的平方) 615.04 466.56 338.56 852.64 484 2756.8
xy 2852 2376 1472 3942 2310 12952
套公式计算参数a和b:
Lxy = ∑xy - 1/n*∑x∑y = 308
Lxx = ∑x^2 - 1/n*(∑x)^2 = 1570
Lyy = ∑y^2 - 1/n*(∑y)^2 = 65.6
x~(x的平均数) = ∑x/n = 109
y~ = ∑y/n = 23.2
b = Lxy/Lxx = 0.196178344
a = y~ - bx~ = 1.81656051
回归方程 ^y = a + bx
代入参数得:^y = 1.8166 + 0.1962x
直线就不画了
该题是最基本的一元线性回归分析题,套公式即可解答。至于公式是怎么推导出来的,请参见应用统计学教科书。。回归分析章节。。

⑥ 在excel表格中,如何使用简单线性回归进行计算

1.在excel表格中输入(或计算出)两组数据X,Y。 2.将两组数据X,Y绘图(图表类型选用XY散点图)。 3.鼠标右键点击曲线,选择添加趋势线。 4.在择添加趋势线中,类型中选用线性,选项中选项显示公式和显示R平方值两项(√)后就会自动进行线性回归计算了。

⑦ 线性回归 怎么算

线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.
数据组说明线性回归
我们以一简单数据组来说明什么是线性回归.假设有一组数据型态为 y=y(x),其中 x={0,1,2,3,4,5},y={0,20,60,68,77,110} 如果我们要以一个最简单的方程式来近似这组数据,则非一阶的线性方程式莫属.先将这组数据绘图如下 图中的斜线是我们随意假设一阶线性方程式 y=20x,用以代表这些数据的一个方程式.以下将上述绘图的 MATLAB 指令列出,并计算这个线性方程式的 y 值与原数据 y 值间误差平方的总合.>> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> y1=20*x; % 一阶线性方程式的 y1 值 >> sum_sq = sum((y-y1).^2); % 误差平方总合为 573 >> axis([-1,6,-20,120]) >> plot(x,y1,x,y,'o'),title('Linear estimate'),grid 如此任意的假设一个线性方程式并无根据,如果换成其它人来设定就可能采用不同的线性方程式;所以我们 须要有比较精确方式决定理想的线性方程式.我们可以要求误差平方的总合为最小,做为决定理想的线性方 程式的准则,这样的方法就称为最小平方误差(least squares error)或是线性回归.MATLAB的polyfit函数提供了 从一阶到高阶多项式的回归法,其语法为polyfit(x,y,n),其中x,y为输入数据组n为多项式的阶数,n=1就是一阶 的线性回归法.polyfit函数所建立的多项式可以写成 从polyfit函数得到的输出值就是上述的各项系数,以一阶线性回归为例n=1,所以只有 二个输出值.如果指令为coef=polyfit(x,y,n),则coef(1)= ,coef(2)=,...,coef(n+1)= .注意上式对n 阶的多 项式会有 n+1 项的系数.我们来看以下的线性回归的示范:>> x=[0 1 2 3 4 5]; >> y=[0 20 60 68 77 110]; >> coef=polyfit(x,y,1); % coef 代表线性回归的二个输出值 >> a0=coef(1); a1=coef(2); >> ybest=a0*x+a1; % 由线性回归产生的一阶方程式 >> sum_sq=sum(y-ybest).^2); % 误差平方总合为 356.82 >> axis([-1,6,-20,120]) >> plot(x,ybest,x,y,'o'),title('Linear regression estimate'),grid
[编辑本段]线性回归拟合方程
最小二乘法
一般来说,线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线,其经验拟合方程如下:其相关系数(即通常说的拟合的好坏)可以用以下公式来计算:理解回归分析的结果
虽然不同的统计软件可能会用不同的格式给出回归的结果,但是它们的基本内容是一致的.我们以STATA的输出为例来说明如何理解回归分析的结果.在这个例子中,我们测试读者的性别(gender),年龄(age),知识程度(know)与文档的次序(noofdoc)对他们所觉得的文档质量(relevance)的影响.输出:Source | SS df MS Number of obs = 242 -------------+------------------------------------------ F ( 4,237) = 2.76 Model | 14.0069855 4 3.50174637 Prob > F = 0.0283 Resial | 300.279172 237 1.26700072 R-squared = 0.0446 ------------- +------------------------------------------- Adj R-squared = 0.0284 Total | 314.286157 241 1.30409194 Root MSE = 1.1256 ------------------------------------------------------------------------------------------------ relevance | Coef.Std.Err.t P>|t| Beta ---------------+-------------------------------------------------------------------------------- gender | -.2111061 .1627241 -1.30 0.196 -.0825009 age | -.1020986 .0486324 -2.10 0.037 -.1341841 know | .0022537 .0535243 0.04 0.966 .0026877 noofdoc | -.3291053 .1382645 -2.38 0.018 -.1513428 _cons | 7.334757 1.072246 6.84 0.000 .-------------------------------------------------------------------------------------------
输出
这个输出包括一下及部分.左上角给出方差分析表,右上角是模型拟合综合参数.下方的表给出了具体变量的回归系数.方差分析表对大部分的行为研究者来讲不是很重要,我们不做讨论.在拟合综合参数中,R-squared 表示因变量中多大的一部分信息可以被自变量解释.在这里是4.46%,相当小.
回归系数
一般地,我们要求这个值大于5%.对大部分的行为研究者来讲,最重要的是回归系数.我们看到,年龄增加1个单位,文档的质量就下降 -.1020986个单位,表明年长的人对文档质量的评价会更低.这个变量相应的t值是 -2.10,绝对值大于2,p值也

⑧ 线性回归方程公式

线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。

一、概念

线性回归方程中变量的相关关系最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。因此,可以认为关于的回归函数的类型为线性函数。

分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。

先求x,y的平均值X,Y

再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)

后把x,y的平均数X,Y代入a=Y-bX

求出a并代入总的公式y=bx+a得到线性回归方程

(X为xi的平均数,Y为yi的平均数)

三、应用

线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。

线性回归有很多实际用途。分为以下两大类:

如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。

给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。


在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。

不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布。

⑨ 线性回归方程公式是什么

线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。


线性回归方程公式求法:


第一:用所给样本求出两个相关变量的(算术)平均值:


x_=(x1+x2+x3+...+xn)/n


y_=(y1+y2+y3+...+yn)/n


第二:分别计算分子和分母:(两个公式任选其一)


分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_


分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2


第三:计算b:b=分子/分母


用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为


其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。


先求x,y的平均值X,Y


再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)


后把x,y的平均数X,Y代入a=Y-bX


求出a并代入总的公式y=bx+a得到线性回归方程


(X为xi的平均数,Y为yi的平均数)



应用


线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。


线性回归有很多实际用途。分为以下两大类:


如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。


给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。


以上内容参考网络-线性回归方程

阅读全文

与简单线性回归分析的参数计算方法相关的资料

热点内容
如何做贺卡很简单的方法 浏览:866
羊绒衫缩绒剂使用方法视频教程 浏览:512
配电箱控制柜的安装方法 浏览:2
吸尘器抽真空使用方法 浏览:65
做人流方法什么好 浏览:974
说话与沟通的方法有哪些 浏览:624
招聘谈钱技巧和方法 浏览:8
怎么补色最快的方法 浏览:380
痛风解决方法有哪些 浏览:363
门牌调换最佳方法 浏览:21
什么方法快速消红 浏览:665
如何运用文学批评方法 浏览:497
小米手机5s输入法在哪里设置方法 浏览:442
通信网络优化的常用方法 浏览:774
数据分析包含哪些方法 浏览:614
88打六折怎么计算方法 浏览:338
藏香的使用方法 浏览:711
41的竖式计算方法 浏览:944
如何快速选择有效的治疗方法 浏览:920
centos安装软件的方法 浏览:289