导航:首页 > 计算方法 > 乘法快速计算方法

乘法快速计算方法

发布时间:2022-07-16 00:09:55

❶ 多位数乘法的快速计算方法哪些

多位数乘法的快速计算方法如下:

1、 十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2、 头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3、 第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4、 几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861

5、 11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

(1)乘法快速计算方法扩展阅读

乘法原理:

如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。

在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。

设 A是 m×n 的矩阵。

可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)

1、Ax=0 肯定是 A'Ax=0 的解,好理解。

2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0

故两个方程是同解的。

同理可得 r(AA')=r(A')

另外 有 r(A)=r(A')

所以综上 r(A)=r(A')=r(AA')=r(A'A)

❷ 乘法简便运算技巧

乘法简便运算方法

一、结合法

一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。

例1 计算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。

二、分解法

一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。

例2 计算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

将18分解成2×9的形式,再将括号去掉,使计算简便。

三、拆数法

有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。

例3 计算:99×99+199

(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:

99×99+199

=99×99+99+100

=99×(99+1)+100

=99×100+100

=10000

(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:

99×99+199

=(100-1)×99+(100-1)+100

=(100-1)×(99+1)+100

=(100-1)×100+100

=10000

四、改数法

有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。

例4 计算:25×5×48

25×5×48

=25×5×4×12

=(25×4)×(5×12)

=100×60

=6000

把48转化成4×12的形式,使计算简便。

例5 计算:16×25×25

因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。

16×25×25

=(4×25)×(4×25)

=100×100

=10000

❸ 乘法简便计算的方法规律

乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。

乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
乘法是四则运算之一
例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
3×5表示5个3相加
5x3表示3个5相加。
注意:1.在如上乘法表示什么中,常把乘号后面的因数做为乘号前因数的倍数。
2.参见wiki中对乘数和被乘数的定义
另:乘法的新意义:乘法不是加法的简单记法
Ⅰ 乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
Ⅱ 加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
在概率论中,一个事件,出现的结果包括n类结果,第1类结果包括M1个不同的结果,第2类结果包括M2个不同的结果,……,第n类结果包括Mn个不同的结果,那么这个事件可能出现N=M1+M2+M3+……+Mn个不同的结果。
以上所说的质是按照自变量的作用来划分的。
此原理是逻辑乘法和逻辑加法的定量表述。
法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律: ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律: ,
3.乘法分配律: 。

❹ 乘法巧算速算方法

1、一位数乘法法则整数乘法低位起,一位数乘法一次积。

个位数乘得若干一,积的末位对个位。

计算准确对好位,乘法口诀是根据。

2、两位数乘法法则整数乘法低位起,两位数乘法两次积。

个位数乘得若干一,积的末位对个位。

十位数乘得若干十,积的末位对十位。

计算准确对好位,两次乘积加一起。


1、多位数乘法法则整数乘法低位起,几位数乘法几次积。

个位数乘得若干一,积的末位对个位。

十位数乘得若干十,积的末位对十位。

百位数乘得若干百,积的末位对百位计算准确对好位,几次乘积加一起。

2、因数末尾有0的乘法法则因数末尾若有0,写在后面先不乘,乘完积补上0,有几个0写几个0。

(4)乘法快速计算方法扩展阅读

乘法的计算法则:

(1)数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;

(2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0)

❺ 数学乘法速算方法

1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一

❻ 怎样算乘法最快

我们计算乘法要想最快的话,一般来说我们可以尝试进行口算。
但是如果口算不行,可以尝试进行计算器进行计算。

❼ 谁知道乘法的速算方法说下 急用额

一、两位数乘两位数。
1.十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1

2+4=6

2×4=8

12×14=168

注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):

口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:

口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5.11乘任意数:

口诀:首尾不动下落,中间之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分别在首尾

11×23125=254375

注:和满十要进一。

6.十几乘任意数:

口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?

解:13个位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

注:和满十要进一。

❽ 数学乘法简便计算方法技巧有哪些

一、结合法

一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。

示例:

计算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。

二、分解法

一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。

示例:

计算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

将18分解成2×9的形式,再将括号去掉,使计算简便。

三、拆数法

有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。

示例:

计算:99×99+199

(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:

99×99+199

=99×99+99+100

=99×(99+1)+100

=99×100+100

=10000

(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:

99×99+199

=(100-1)×99+(100-1)+100

=(100-1)×(99+1)+100

=(100-1)×100+100

=10000

四、改数法

有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。

示例:

计算:25×5×48

25×5×48

=25×5×4×12

=(25×4)×(5×12)

=100×60

=6000

把48转化成4×12的形式,使计算简便。

数学乘法运算定律

整数的乘法运算满足:交换律,结合律,分配律,消去律。

随着数学的发展, 运算的对象从整数发展为更一般群。

群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。

1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。

2、乘法结合律:(ab)c=a(bc)

3、乘法分配律:(a+b)c=ac+bc

阅读全文

与乘法快速计算方法相关的资料

热点内容
t恤的折叠方法有哪些 浏览:617
熬夜预防方法有哪些 浏览:533
电脑键盘字符使用方法 浏览:625
瘤胃鼓气的治疗方法 浏览:760
无保护分娩接产方法研究目标 浏览:430
29x55的简便方法计算 浏览:358
胆管癌预防性治疗方法 浏览:689
天然气流量计安装方法 浏览:938
井字楼焊接方法视频 浏览:251
羽毛球快速入门反手的方法 浏览:811
鲁班训练方法视频 浏览:412
小车如何除雾的正确方法 浏览:647
用白醋祛痣的正确方法 浏览:248
老疤怎么去除最有效方法 浏览:660
cfoutofmemory解决方法 浏览:705
惠普m436打印机使用方法视频 浏览:522
c型钢的安装方法 浏览:491
中医治湿疹有哪些方法治疗 浏览:356
小乌龟怎么养在家的方法 浏览:309
联想的设备中心在哪里设置方法 浏览:399