① 10道简便运算有哪些
472+503
=472+500+3
=972+3
=975
143+(57+26)
=143+57+26
=200+26
=226
78-46-14
=78-(46+14)
=78-60
=18
32×125
=4×8×125
=4×(8×125)
=4×1000
=4000
3×125×8
=3×(125×8)
=3×1000
=3000
47+51+49+53
=(47+53)+(51+49)
=100+100
=200
99+(38+101)
=99+101+38
=200+38
=238
125×64
=125×8×8
=1000×8
=8000
500-99-1-98-2
=500-(99+1+98+2)
=500-200
=300
340+498
=340+500-2
=840-2
=838
简便运算方法:
1、分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540。
2、提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3、注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500。
② 10道乘法简便运算
32*25*125
③ 10道四年级简便运算
1、24.6-3.98+5.4-6.02
解析:此题利用加法交换结合律,凑整再计算。步骤如下:
24.6-3.98+5.4-6.02
=(24.6+5.4)-(3.98+6.02)
=30-10
=20
2、27×17/26
解析:此题先用加法分配律,把27转换成(26+1),再利用乘法结合律,使得运算简便。
27×17/26
=(26+1)×17/26
=26×17/26+1×17/26
=17+17/26
=17又17/26
3、1.2×2.5+0.8×2.5
运用提取公因数的方法,公式:ac+ab=a(b+c),提取公因数2.5,1.2和0.8相加正好凑整数,使得运算简便。
1.2×2.5+0.8×2.5
=(1.2+0.8)×2.5
=2×2.5
=5
4、2.96×40
此题先利用乘法分配律,把2.96×40转换成29.6x4,再利用乘法结合律来简便计算。
2.96×40
=29.6x4
=(30-0.4)x4
=30×4+0.4×4
=120-1.6
=118.4
5、50×49×2
解析:此题运用乘法交换律:a×b=b×a,交换3个数的位置,先计算50×2,再跟49相乘,使得运算简便。
50×49×2
=50×2×49
=100×49
=4900
6、250+616÷28×15
解析:此题先利用分配法将616转换成560+56,再提取公约数28,然后按照乘法结合律,使得运算简便。
250+616÷28×15
=250+(560+56)÷28×15
=250+(20+2)×15
=250+300+30
=580
7、0.125×96
解析:此题先利用减法分配律把96转换成(100-4),再利用乘法结合律,使得运算简便。
0.125×96
=0.125×(100-4)
=0.125×100-0.125×4
=12.5-0.25
=12
8、0.4×125×25×0.8
解析:此题利用乘法交换律,先计算0.4×25,再计算125×0.8,分别凑整后再相乘,使得运算简便。
0.4×125×25×0.8
=(0.4×25)×(125×0.8)
=10×100
=1000
9、99×99+99
解析:此题利用运用提取公因数的方法,公式:ac+ab=a(b+c),提取公因数99,使得运算简便。
99×99+99
=(99+1)×99
=9900
10、32×125×25
解析:此题利用乘法分配律,将32转换成4×8,再运用凑整法,4×25,8×125,使得运算简便。
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
④ 找出十道能用简便方法计算的小数乘法并且有答案
(1)2.64×1.7-2.64×0.7
=2.64×(1.7-0.7)
=2.64×1
=2.64
(2)31.5×1.07-3.15×0.7
=3.15×10.7-3.15×0.7
=3.15×(10.7-0.7)
=3.15×10
=31.5
(3)2.7×5.7-2.7+5.3×2.7
=2.7×(5.7-1+5.3)
=2.7×10
=27
(4)0.625÷0.125×0.8
=(0.625×0.8)×8÷(0.128×8)
=0.5×8÷1
=4
(5)18.6×6.1+3.9×18.6
=18.6×(6.1+3.9)
=18.6×10
=186
(6)1.3579+3.5791+5.7913+7.9135+9.1357
=(1+3+5+7+9)×1.1111
=25×1.1111
=27.7775
(7)52.5x2.9+5.45
=5.25x29+5.25+0.2
=5.25×(29+1)+0.2
=5.25×30+0.2
=157.5+0.3
=157.7
(8)0.92x15+0.08x15
=(0.92+0.08)×15
=1×15
=15
(9)0.72×1.25×2.5
=0.9×(0.8×1.25)×2.5
=0.9×1×2.5
=2.25
(10)400.6x7-2003x0.4
=200.3x14-200.3x4
=200.3×(14-4)
=200.3×10
=2003
⑤ 四年级乘法的简便计算方法
乘法的简便运算之一——巧用乘法交换律和乘法结合律进行简便运算。其基本方法也是通过交换和结合达到凑成整十、整百、整千的数,便于我们口算出结果。
⑥ 六年级数学,10道简便计算题带答案谢谢哦∩_∩
一、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
⑦ 乘法简便计算的方法规律
乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
乘法是四则运算之一
例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
3×5表示5个3相加
5x3表示3个5相加。
注意:1.在如上乘法表示什么中,常把乘号后面的因数做为乘号前因数的倍数。
2.参见wiki中对乘数和被乘数的定义
另:乘法的新意义:乘法不是加法的简单记法
Ⅰ 乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
Ⅱ 加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
在概率论中,一个事件,出现的结果包括n类结果,第1类结果包括M1个不同的结果,第2类结果包括M2个不同的结果,……,第n类结果包括Mn个不同的结果,那么这个事件可能出现N=M1+M2+M3+……+Mn个不同的结果。
以上所说的质是按照自变量的作用来划分的。
此原理是逻辑乘法和逻辑加法的定量表述。
法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律: ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律: ,
3.乘法分配律: 。
⑧ 乘法的简便方法是什么
一、30以内的两个两位数乘积的心算速算
1、两个因数都在20以内,任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:
11×11=120+1×1=121 12×13=150+2×3=156 13×13=160+3×3=169 14×16=200+4×6=224 16×18=240+6×8=288
2、两个因数分别在10至20和20至30之间对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:
22×14=300+2×4=308
23×13=290+3×3=299
26×17=400+6×7=442
28×14=360+8×4=392
29×13=350+9×3=377