导航:首页 > 计算方法 > 三重积分计算方法先一后二

三重积分计算方法先一后二

发布时间:2022-07-11 09:41:17

Ⅰ 三重积分的计算原理的“先二后一”的“二”代表什么几何意义 怎么样去理解计算三重积分

就是先做二重积分.
几何意义就是:三重积分的被积区域是一个三维图形,而积分时都是先在三维图形的投影上(投影是二维图形)进行,所以是“先二后一”.

Ⅱ 三重积分计算思路是否正确如下图

正确。

因为是偶函数,积分区间是对称区间,所以可以全部转化到第一卦限来求,然后乘以8,又因为是对称轮换式,也就是∭xdxdydz=∭ydxdydz=∭zdxdydz

所以原式=8*3*∭xdxdydz

基本的积分,最后得192

直角坐标系法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法。

⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

①区域条件:对积分区域Ω无限制;

②函数条件:对f(x,y,z)无限制。

⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成。

②函数条件:f(x,y)仅为一个变量的函数。

如何计算三重积分∫∫∫dV

三重积分计算方法

1、三重积分的计算,首先要转化为“一重积分+二重积分”或“二重积分+一重积分”。与二重积分类似,三重积分仍是密度函数在整个坐标轴内每一个点都累积一遍,且与累积的顺序无关。


3、



(3)三重积分计算方法先一后二扩展阅读:

解三重积分的直角坐标系法。适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法

1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。区域条件:对积分区域Ω无限制;函数条件:对f(x,y,z)无限制。

2、先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成。函数条件:f(x,y)仅为一个变量的函数。

Ⅳ 三重积分中先二后一法和先一后二法有什么区别

常用先一后二法,俗称:柱坐标投影法
因为这方法可直接变为二重积分
先把z的积分算出来,然后计算xoy面的积分
而先二后一,俗称:柱坐标截面法
这个方法的原理就是把横截面面积a(z)加起来,就形式体积元素了
横截面面积会随着z而变化
所以横截面a(z)是关于x和y的二重积分,先算出来
最后计算关于z的定积分
尤其是被积函数只关于z的函数时,二重积分可直接变为面积公式
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆
如果问题解决后,请点击下面的“选为满意答案”

Ⅳ 三重积分的计算方法及经典例题

三重积分的计算方法:

⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

①区域条件:对积分区域Ω无限制;

②函数条件:对f(x,y,z)无限制。

⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

②函数条件:f(x,y)仅为一个变量的函数。

示例:

设Ω为空间有界闭区域,f(x,y,z)在Ω上连续

(1)如果Ω关于xOy(或xOz或yOz)对称,且f(x,y,z)关于z(或y或x)为奇函数,则:

(2)如果Ω关于xOy(或xOz或yOz)对称,Ω1为Ω在相应的坐标面某一侧部分,且f(x,y,z)关于z(或y或x)为偶函数,则:

(3)如果Ω与Ω’关于平面y=x对称,则:

(5)三重积分计算方法先一后二扩展阅读

设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ);

作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。

Ⅵ 三重积分的计算

三重积分的计算,首先要转化为“一重积分+二重积分”或“二重积分+一重积分”。

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法:

先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

区域条件:对积分区域Ω无限制;

函数条件:对f(x,y,z)无限制。

先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

函数条件:f(x,y)仅为一个变量的函数。

三重积分特点:

当然如果把其中的“二重积分”再转化为“累次积分”代入,则三重积分就转化为了“三次积分”,这个属于二重积分化累次积分。

与二重积分类似,三重积分仍是密度函数在整个Ω内每一个点都累积一遍,且与累积的顺序无关(按任意路径累积)。当积分函数为1时,就是其密度分布均匀且为1,三维空间质量值就等于其体积值;当积分函数不为1时,说明密度分布不均匀。

Ⅶ 做三重积分时,什么时候用“先一后二”法,什么时候用“先二后一”法

先一后二:在积分区域在X,Y面。而Z满足一定函数关系。

先二后一:在满足F为Z的一元函。及X,Y的平方和的情况下。

(7)三重积分计算方法先一后二扩展阅读:

计算方法

直角坐标系法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法

⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

①区域条件:对积分区域Ω无限制;

②函数条件:对f(x,y,z)无限制。

⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

②函数条件:f(x,y)仅为一个变量的函数。

柱面坐标法

适用被积区域Ω的投影为圆时,依具体函数设定,如设

①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;

②函数条件:f(x,y,z)为含有与 (或另两种形式)相关的项。

球面坐标系法

适用于被积区域Ω包含球的一部分。

①区域条件:积分区域为球形或球形的一部分,锥面也可以;

②函数条件:f(x,y,z)含有与 相关的项。

参考资料来源:

网络-三重积分

Ⅷ 三重积分什么时候用先一后二,什么时候用先二后一呢

对积分区域是圆锥体,椭圆面,,球体,柱体三个的组合,积分函数是除先积2的那两个的另外一个的时候,一般的情况就是,积分函数能化为只含Z的,积分区域是以上的组合,就用先2后1。



  1. 设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为ri(i=1,2,3..n),体积记为Δδi,记||T||=max{ri},在每个小区域内取点f(ξi,ηi,i)。

  2. 作和式Σf(ξi,ηi,ζi)Δδi,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,dV=dxdydz。

  3. 设三元函数z=f(x,y,z)定义在有界闭区域Ω上将区域Ω任意分成n个子域Δvi(i=123…,n)并以Δvi表示第i个子域的体积。

  4. 在Δvi上任取一点(ξiηiζi)作和(n/i=1 Σ(ξiηiζi)Δvi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y,z)在区域Ω上的三重积分,记∫∫∫f(x,y,z)dv。

Ⅸ 三重积分先一后二和先二后一

投影法:

Ⅹ 高等数学,求解释一下计算三重积分“先二后一”的原理和方法

三重积分是二重积分的扩展,所以,先计算其中的二重积分,再计算最后的一重积分。

阅读全文

与三重积分计算方法先一后二相关的资料

热点内容
初五接财神正确方法动图 浏览:720
动物胃肠炎的治疗方法 浏览:358
高冰岫玉的鉴别方法 浏览:87
聚氯乙烯胶水快速干的方法 浏览:363
飞机合页的安装方法 浏览:637
华为平板电脑录音在哪里设置方法 浏览:874
燃烧成分分析方法分为哪几种 浏览:940
铝合金门铰链安装方法 浏览:458
光合酒花的鉴别方法 浏览:305
如何找到自己的赚钱方法 浏览:275
SL是什么教育方法 浏览:690
导线测量计算表计算方法 浏览:881
反卷云龙纹鉴别方法 浏览:356
学生如何增肥快速有效方法 浏览:728
125乘64用简便方法怎么算 浏览:311
芦荟胶祛痘印最佳方法 浏览:927
立式缝焊机如何调整参数方法视频 浏览:994
眼袋物理方法怎么去除最有效果 浏览:222
健身训练有哪些方法 浏览:821
标题全面深化改革有哪些方法 浏览:794