导航:首页 > 计算方法 > 最优化计算方法陈开周

最优化计算方法陈开周

发布时间:2022-07-10 16:05:25

Ⅰ 浅谈非线性无约束最优化问题的几种算法 详细�0�3

当前我国高校学生干部社会 角色扮演问题研究韩 强( 陕西理工学院, 陕西 汉中 723001) 【摘要】当前高校学生干部角色发生了异化, 导致这一结果的原因除了社会不良风气, 特别是“官场文化”的影响外, 还有高校自身管理的漏洞。而恢复“五员”的社会角色, 无疑已成为当前高校不容忽视的一项重要内容。 【关键词】学生干部; 社会角色; 异化; 五员 【中图分类号】C913 【文献标识码】A 【文章编号】1672-996X( 2009) 02-0174-02 高校学生干部一般包括各级共青团干部、学生会干部、 往往从社会生活中可以找到原型。不论是一些机关的拉关班委会成员以及各类学生社团负责人等。这支队伍是学生中 系、买官, 还是社会强势群众的以势压人、以权代法; 不论最活跃的群体, 不仅是学生辅导员、班主任的得力助手, 更 是一些领导干部的脱离群众, 还是某些行政机关中的人浮于是教师和广大学生之间沟通的桥梁和纽带, 在校园文化建 事、效率低下, 社会不良风气的影响是学生干部社会角色异设, 校风学风建设, 大学生自我教育、自我管理、自我服务 化的最主要因素。等方面起着非常重要的作用。在新的形势下, 重视学生干部 其次, 理论教育的折扣化。在许多高校中都有“两队伍建设, 提高学生干部的综合素质, 是进一步加强和改进 课”、学生干部培训班、团校以及党校等理论教育阵营, 而大学生思想政治教育、实现人才培养目标的重要环节和突破 且针对学生干部的各种理论学习班也不少, 每次培训学习的口。 学生干部有很多, 结业后还要写思想汇报、学习感悟等。形式上看很完备, 但事实上学生干部很多都抱着“没意思”、一、学生干部的异化现象当前, 学生干部的社会角色出现了异化现象。这里的异 “混张结业证”等思想参加培训班, 在理论认识上的提高几化, 是指违背学生干部性质本身的角色变异。具体来说, 主 乎为零。例如: 据调查, 某校召开学生干部理论培训班后不要有以下五种角色。 久, 在一年级参加培训的十名团支书、班长中, 有七人不能校园官僚派。学生干部中有相当一部分人“官本位”十 准确表述“三个代表”重要思想的内容; 某系十一名主要学足, 将学生干部的级别看成是“官”的台阶, 为了获取更大 生干部中, 有七人不能完整表述党的性质。的官阶, 而废尽心思。据二十一世纪人才报报道: 南方某高 再次, 学生干部自我优越感的膨胀化。学生干部作为客校“为了争夺学生会主席的位置, 有学生不惜花费1万元以 观上的校园强势群众, 不论是在机会的取得上, 利益的分配上的血本”。而类似的拉选票、请客送礼、暗箱操作、排除 上, 还是组织资源的获取上, 支配权力的空间上, 等诸多方异己等司空见惯的现象也活生生的证实了官僚派的存在, 其 面都与普通同学存在着明显的优势。在这一群体中, 职责不影响极其恶劣, 不但严重扰乱了学生干部的正常工作秩序, 同的学生干部的权力支配空间, 地缘、人缘优势也不大相而且影响了校风、学风。 同。这样, 学生干部容易产生一种优越感, 这种优势感, 超利益优先派。在高校中, 学生的管理很大程度上属于自 出了自己的职责区域, 变成了对权力资源的崇拜, 并最终导我管理, 学生干部在客观上起到了老师与学生的桥梁作用。 致官僚化社会角色。同时, 由于学生干部这一身份, 学生干部得以获取信息灵敏 最后, 学生干部管理中的考核机制、激励机制、惩处机化, 交际广泛化, 渠道多元化等客观上的优势, 从而在利益 制的不健全。高校中的学生干部群体是一个规模庞大的体分配上与获取上呈现出优先化。例如: 学生干部身份本身就 系, 其组织结构一般是金字塔型, 其管理上一般都有明确的是就业的一张优势牌, 是报考公务员的主要因素之一; 有的 规章制度。但是在诸多的规章制度中, 却很少有完善的考核学生会主席一年能净赚几万元; 学生干部有很多抛头露面的 机制、激励机制、惩处机制。在日常的工作中, 无法衡量学机会, ……我们并不反对学生干部正当利益的取得, 但构成 生干部工作的效果。导致干好干坏一个样, 干与不干一个利益优先群体的功利化现象却有悖于学生干部服务同学、顾样, 无法调动学生干部, 特别是基层学生干部的工作积极全大局的初衷。 性, 使一些学生干部的“靠山”思想、“无所谓”思想的滋强势集团派。与普通学生相比, 学生干部群体应该算是 长, 无法在普通同学中树立与提高学生干部“先进分子”的强势群体, 特别是在高层。这不仅仅是因为他们的干部身份 形象和影响力。在客观上造成了概念性影响力, 更重要的是他们客观上拥有 三、学生干部的正确角色一定可支配性权力资源, 上层交际的地缘优势和接触面的人 异化的社会角色是严重影响学生干部发展和学生公共活缘优势。与普通学生相比, 他们常常依靠权力优势、地缘优 动正常开展的潜在威胁。作为一名干部, 就要顾全大局, 树势和人缘优势等, 对他人施加影响, 获取个人利益优先化。 立正确的社会角色观, 扮演正确合理的社会角色, 那么, 在脱离群众派。我们党在长期的革命斗争中总结出一条宝 高校校园中, 学生干部究竟应扮演何种社会角色呢? 我认为贵的革命经验——群众路线, 即“从群众中来, 到群众去, 应该是“五员”角色。一切依靠群众, 一切为了群众。”作为高校的学生干部, 要 政策的宣传员。学校的各项政策、规章制度往往需要通成功起到承上启下的作用, 基点就是将群众路线贯彻到学生 过学生干部传达给其他学生, 从而保证政策、规章制度的落工作中。可在现实中, 有一部分学生干部往往忘记了这一 实。点, 高高在上, 只知道布置、安排, 而不知道身体力行, 不 信息的联络员。把上级的指示和老师的安排传递给学知道与普通学生打成一片。无形中就助长了官僚习气, 影响 生, 把学生的意见、建议和想法汇报给上级和老师, 真正在学生干部的威信。 师生间架起一道桥梁。“无过即功”派。“无过即功”派又叫消极应付派。指 活动的运动员。学生作为中间桥梁, 担负着活动的组织的是一些学生干部对自己的职责不负责任, 消极被动的干工 工作, 经常扮演的是“教练员”。实际上, 学生干部身体力作, 搞活动, 这样的学生干部在基层学生干部群体中为数不 行, 不仅能够提高效率, 拉近“干群”关系, 同时也将进一少, 特别是班级中除团支部书记、班长以外的学生干部, 表 步提高学生干部的综合素质。现的比较突出。这样的社会角色, 短期内看不到实质性危 学生的服务员。作为学生中的积极分子、优秀分子, 学害, 但长此以往, 必然导致不负责任、消极等“官僚主义” 生干部有责任也有义务服务于广大同学, 不应该去片面的计病的流行。所以, 不论是哪一层级的学生工作负责人都要警 较个人得失, 也不能带着强烈功利化色彩去担任学生干部,惕这种“无过即功”的消极思想的蔓延。 正如唐太宗所言“水能载舟, 亦能覆舟”。只要你切实为同学服务了, 学生就会支持你的工作。 二、学生干部异化的原因上文中我们列举了学生干部社会角色异化, 那么导致这 学风、校风的驾驶员。古语有云: “其身正, 不令即些角色出现的原因究竟是什么呢? 显然, 不仅仅是学生干部 行; 其身不正, 虽令不从。”高校的学生干部, 要率先遵守的个人素质问题, 而且是社会环境, 管理机制等多因素的共 校纪校规, 加强自身学风、工作作风、生活作风的建设。学同作用。具体来说, 有以下四个方面: 生干部是学校众多学生中的精英分子, 代表了学生的风貌,首先, 社会不正之风的影响。置身空前开放的社会, 我 代表了学校的形象。们不能将大学与社会割裂开来, 大学不是空中楼阁, 校园小 学生干部是高校学生管理工作中的一支重要的力量, 重社会, 社会大校园。事物是普遍联系的, 校园中的不正之风 视和加强高校学生干部队伍建设关系到高校的稳定和发展。() 下转176页下点, 并在一定程度上具有二者的优点, 是无约束最优化算法 一、数学模型中最为有效的方法之一。在一定条件下, 算法具有二次终止性、整体收敛性和超线性的收敛等性质。三、数学试验它的含义是求目标函数 在 维空间 上的最小值, 即 分别用本文所介绍的最速下降法、Newdon法、共轭梯求 使对于任意 的都有 。 度法、拟Newdon法求解去约束最优化问题:二、算法的介绍 1、最速下降法基本思想: 从某一点 出发, 选择目标函数 的负梯度方向作为每一步的搜索方向, 以利于尽快达到极小点。 下面我们对这四种算法的计算过程和结果给予简单的介特点: 的负梯度方向, 仅仅 在点的邻近才具有使 绍。函数下降最快的性质, 而对于整个求最优解的过程来说就不 最速下降法:是这样的。在一定条件下, 最速下降法是线性收敛的, 收敛 具体迭代过程见表1 速度较慢。当初始点 离最优点 较远时, 一般来说下降 表1 较快, 效果较好, 在求最优解的前期, 使用最速下降法是有利的。 2、Newdon法基本思想: 从某一点 出发, 利用目标函数 在迭代点 处的二次Taylor展开去近似目标函数, 然后精确求出这个二次函数的极小点, 以它作为目标函数极小点的近似值。特点: 在一定的条件下, 当初始点 充分接近极小点时, 有很快的收敛速度, 但是局部收敛的。如果 正定且初始点适合时它是总体收敛的, 但当初始点远离局部极小点时, 可能不正定, 也可能奇异, 这样产生的 可能 由表1可以看出当第5次迭代后的精度为 ,不是下降方向。 前后两次最速下降法的搜索方向是相互垂直的。 3、共轭梯度法 Newdon法:基本思想: 它是一个典型的共轭方向法, 它的每一个搜 索方向都是互相共轭的, 而这些搜索方向 仅仅是负梯度 , 与上一次迭代的搜索方向 的组合, 然后沿 方向进 行最优搜索。特点: 从理论上来说, 对于目标函数是正定二次函数, 利用共轭梯度法求最优解, 在 步以内必可达到极小点 , 它具有二次终止性。但在实际的计算当中, 由于计算 取初始点误差等因素的影响, 导致经过 步迭代没有得到满足精度要 , 求的解, 或者说目标函数没有进入一个正定二次函数的区域, 此时搜索方向应重新开始, 即将 作为新的初始点, 重 可见Newdon法有一步达到最优点的特点。新设置负梯度方向的措施来加速收敛。 共轭梯度法: 4、拟Newdon法 具体迭代过程见表2:基本思想: 它是一种改进的Newdon法, 也称变尺度方 表2 法。为了保持Newdon法收敛速度快的优点, 而避免 Newdon矩阵求逆的计算, 引入新的迭代矩阵序列 用以代替 ( 其中 ), 不仅要求 ,且 易于计算。 形式的拟Newdon法迭代公式是:具体迭代过程见表3: 表3 其中 为拟Newdon方向, 亦即在 尺度矩阵意义下的最速下降方向; 为修正矩阵, 为修正项, 要求 具有如下性质: i. 满足拟Newdon方程, 即 , 其中: ii. 必须是对称阵, 来保证 成为下降方向。特点: 它是结合最速下降法和阻尼Newdon法而构造的 由此表可看出拟Newdon法第一步沿负梯度方向, 两步一类新的算法, 既克服了最速下降法收敛速度慢, 又克服了 达到最优点。 Newdon法搜索方向构造较困难, Hessian矩阵计算量大的缺浅谈非线性无约束最优化问题的几种算法范慧玲( 黑龙江八一农垦大学文理学院数学系, 黑龙江 大庆 163319) 【摘要】近二十年来, 无约束最优化问题的理论与应用受到人们的重视, 发展迅速, 成果很多。本文归纳几种非线性无约束最优化问题的几种算法, 并举例说明它们的应用, 同时对各种算法的思想和特点进行总结。 -1 1 2 3 0 0 - - -

Ⅱ 单纯形法最优解的检验是什么

若在极小化问题中,对于某个基本可行解,所有检验数小于等于0,则这个基本可行解是最优解。

Ⅲ 最优化方法的基本定义

最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用――运输问题;以及动态规划的模型、求解、应用――资源分配问题。
最优化方法
1.微分学中求极值
2.无约束最优化问题
3.常用微分公式
4.凸集与凸函数
5.等式约束最优化问题
6.不等式约束最优化问题
7.变分学中求极值
详细资料 最优化模型一般包括变量、约束条件和目标函数三要素:①变量:指最优化问题中待确定的某些量。变量可用x=(x1,x2,…,xn)T表示。②约束条件:指在求最优解时对变量的某些限制,包括技术上的约束、资源上的约束和时间上的约束等。列出的约束条件越接近实际系统,则所求得的系统最优解也就越接近实际最优解。约束条件可用 gi(x)≤0表示i=1,2,…,m,m 表示约束条件数;或x∈R(R表示可行集合)。③目标函数:最优化有一定的评价标准。目标函数就是这种标准的数学描述,一般可用f(x)来表示,即f(x)=f(x1,x2,…,xn)。要求目标函数为最大时可写成;要求最小时则可写成。目标函数可以是系统功能的函数或费用的函数。它必须在满足规定的约束条件下达到最大或最小。 问题的分类 最优化问题根据其中的变量、约束、目标、问题性质、时间因素和函数关系等不同情况,可分成多种类型(见表)。最优化方法
最优化方法
不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。反之,某些最优化方法可适用于不同类型的模型。最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。①解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。②直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。此时可采用直接搜索的方法经过若干次迭代搜索到最优点。这种方法常常根据经验或通过试验得到所需结果。对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。③数值计算法:这种方法也是一种直接法。它以梯度法为基础,所以是一种解析与数值计算相结合的方法。④其他方法:如网络最优化方法等(见网络理论)。
解析性质
根据函数的解析性质,还可以对各种方法作进一步分类。例如,如果目标函数和约束条件都是线性的,就形成线性规划。线性规划有专门的解法,诸如单纯形法、解乘数法、椭球法和卡马卡法等。当目标或约束中有一非线性函数时,就形成非线性规划。当目标是二次的,而约束是线性时,则称为二次规划。二次规划的理论和方法都较成熟。如果目标函数具有一些函数的平方和的形式,则有专门求解平方和问题的优化方法。目标函数具有多项式形式时,可形成一类几何规划。
最优解的概念
最优化问题的解一般称为最优解。如果只考察约束集合中某一局部范围内的优劣情况,则解称为局部最优解。如果是考察整个约束集合中的情况,则解称为总体最优解。对于不同优化问题,最优解有不同的含意,因而还有专用的名称。例如,在对策论和数理经济模型中称为平衡解;在控制问题中称为最优控制或极值控制;在多目标决策问题中称为非劣解(又称帕雷托最优解或有效解)。在解决实际问题时情况错综复杂,有时这种理想的最优解不易求得,或者需要付出较大的代价,因而对解只要求能满足一定限度范围内的条件,不一定过分强调最优。50年代初,在运筹学发展的早期就有人提出次优化的概念及其相应的次优解。提出这些概念的背景是:最优化模型的建立本身就只是一种近似,因为实际问题中存在的某些因素,尤其是一些非定量因素很难在一个模型中全部加以考虑。另一方面,还缺乏一些求解较为复杂模型的有效方法。1961年H.A.西蒙进一步提出满意解的概念,即只要决策者对解满意即可。 最优化一般可以分为最优设计、最优计划、最优管理和最优控制等四个方面。①最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法已使许多设计优化问题得到解决。一个新的发展动向是最优设计和计算机辅助设计相结合。电子线路的最优设计是另一个应用最优化方法的重要领域。配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展(见优选法)。②最优计划:现代国民经济或部门经济的计划,直至企业的发展规划和年度生产计划,尤其是农业规划、种植计划、能源规划和其他资源、环境和生态规划的制订,都已开始应用最优化方法。一个重要的发展趋势是帮助领导部门进行各种优化决策。③最优管理:一般在日常生产计划的制订、调度和运行中都可应用最优化方法。随着管理信息系统和决策支持系统的建立和使用,使最优管理得到迅速的发展。④最优控制:主要用于对各种控制系统的优化。例如,导弹系统的最优控制,能保证用最少燃料完成飞行任务,用最短时间达到目标;再如飞机、船舶、电力系统等的最优控制,化工、冶金等工厂的最佳工况的控制。计算机接口装置不断完善和优化方法的进一步发展,还为计算机在线生产控制创造了有利条件。最优控制的对象也将从对机械、电气、化工等硬系统的控制转向对生态、环境以至社会经济系统的控制。
图书信息
书 名: 最优化方法
作者:张立卫
出版社:科学出版社
出版时间: 2010年6月1日
ISBN: 9787030276490
开本: 16开
定价: 27.00元

Ⅳ 最优化方法的内容简介

《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广Lagrange方法、非线性半定规划的增广Lagrange方法、非线性二阶锥优化的增广Lagrange方法以及整数规划的Lagrange松弛方法。《最优化方法》注重知识的准确性、系统性和算法论述的完整性,是学习最优化方法的一本入门书。
《最优化方法》可用作高等院校数学系高年级本科生和管理专业研究生的教材,也可作为相关工程技术人员的参考用书。

Ⅳ 最优化选择法数学原理

2.2.1 目标函数

设观测异常以ΔZk表示,k为观测点序号,k=1,2,…,m,m为观测点数。

设所选用的地质体模型的理论异常以 Z 表示,Z 是模型体参量和观测点坐标的函数,即

Z=f(xk,yk,zk,b1,b2,…,bn

式中:xk,yk,zk为观测点的坐标;b1,b2,…,bn为模型体的参量,如空间位置、产状、物性等,参量的个数为n。

模型体的初始参量用

,…,

表示。

理论曲线与实测曲线之间的符合程度,是以各测点上理论异常与实测异常之差的平方和(即偏差平方和)来衡量的,用φ表示,即

地球物理数据处理教程

目的在于求得一组关于模型体参量的修改量δ1,δ2,…,δn,来修改模型体给定的初值参量,即

地球物理数据处理教程

于是求出关于模型体参量的一组新值,而由这组新参量形成的模型体的理论异常与实测异常之间的偏差平方和将取极小,即是

地球物理数据处理教程

代入式(2.2.1)中将使φ值获得极小,这时bi即为我们的解释结果,这称为最小二乘意义下的最优化选择法。

我们称φ为目标函数,用它来衡量理论曲线与实测曲线的符合程度。最优化方法的关键在于求取使φ值获得极小参量的改正值δi,而f通常是bi的非线性函数,因而该问题归结为非线性函数极小的问题。

2.2.2 求非线性函数极小的迭代过程

从上已知f为bi的非线性函数,那么要求它与实测值之间的偏差平方和φ为极小的问题就称为非线性极小问题,或称为非线性参数的估计问题。如果是线性问题,参数估计比较简单,通常进行一次计算即可求出参数的真值,而对非线性问题,参数估计却要复杂得多,为了求解,通常将函数在参数初值邻域内展成线性(忽略高次项),即所谓的线性化,然后再求得改正量δi(i=1,2,…,n),由于这是一种近似方法,因而不可能使φ一次达到极小,而需要一个迭代过程,通过反复计算而逐步逼近函数φ的极小值。

图2.1 不同埋深时的重力异常

为了说明这个求极小的迭代过程,可以举一个单参量的例子,即假如我们要确定引起重力异常Δgk的场源地质体的深度,假设场源为一个已知体积和密度的球体模型,如图2.1所示,那么φ就是球心埋深z的函数,如果球心埋深的真值为h,我们首先取初值为z(0),这时函数

地球物理数据处理教程

式中:Δgk为实测异常;g(z)是球心埋深为z的理论重力异常;φ随z的变化情况示于图2.2 中,要求使φ获极小的z,即要求使

地球物理数据处理教程

的根。由于z(0)和φ(z(0))不能一次求出φ的极小来,通常采用迭代的办法,如图2.3所示,例如用牛顿切线法迭代求根,根据下式

地球物理数据处理教程

得到一个更近似于根的值z(1),但不等于h,因此需进一步再用上式,将z(1)作为新的初值z(0),可得到新的z(1)更接近于h,如此反复下去可以使z值无限接近于h,当满足精度要求时,我们认为它近似等于h了,停止迭代,这时的z(1)就作为h值。

图2.2 函数φ(z)随z变化示意图

图2.3 用牛顿切线法求φ′(z)=0的根示意图

2.2.3 单参量非线性函数的极小问题

单参量不仅是讨论多参量的基础,而且往往在求多参量极小时要直接用到单参量极小的方法,因此有必要作一介绍。

求单参量极小的方法很多,上面用到的牛顿切线法就是其中之一,在此我们介绍一种用得较多的函数拟合法,以及精度较高的DSC-Powell方法。

2.2.3.1 函数拟合法

2.2.3.1.1 二次函数拟合法

A.不计算导数的情况

设取三个参量值x1、x2、x3,它们对应的φ 值就应为φ1、φ2、φ3,过三个点(x1,φ1;x2,φ2;x3,φ3)作二次抛物线,应有下式

地球物理数据处理教程

联立φ1、φ2、φ3的方程式,即可得出系数A、B、C来。

当A>0时,应有极小点存在,我们设极小点为d,那么根据极小的必要条件有

地球物理数据处理教程

将A、B的表达式代入即得

地球物理数据处理教程

当x1、x2、x3为等距的三点时,上式可简化为

地球物理数据处理教程

B.计算导数的情况

设已知两个点的参量值x1和x2对应的函数值φ1、φ2,并已求得x1点的一阶导数值φ′(x1),可用下列方法求极小点d:

地球物理数据处理教程

联立φ1、φ2、φ′(x1)三个方程即可得A、B、C,代入极小点的表达式即可求得极小点。

为了简化起见,不妨设x1为坐标原点(即x1=0),设x2=1,于是上面各式简化成:

φ′(x1)=B

φ1=C

φ2=A+B+C

A=φ2-φ′(x1)-φ1

地球物理数据处理教程

2.2.3.1.2 三次函数拟合法

取两个点的参量值x1和x2,及相应的φ1和φ2值,并已得到该两点的一阶导数值φ′(x1)和φ′(x2),我们选用一个三次多项式

φ=Ax3+Bx2+Cx+D

代入上面给出的4个条件,同样,为了简化起见,不妨设x1为坐标原点(即x1=0),设x2=1,则有

φ1=D

φ2=A+B+C+D

φ′(x1)=C

φ′(x2)=3A+2B+C

联立求解,可定出4个系数A、B、C、D,按照求极小的必要条件

φ′=3Ax2+2Bx+C=0

当二阶导数

φ″=6Ax+2B>0

时有极小存在,极小点d就为

地球物理数据处理教程

为了计算方便,令

v=φ′(x1

u=φ′(x2

S=-3(φ12)=3(A+B+C)

Z=s-u-v=B+C

W2=Z2-vu=B2-3AC

于是极小点d就可用下列形式表示:

地球物理数据处理教程

2.2.3.2 DSC-Powell 法

该法为比较细致的单参量探测法,精度比较高,计算工作量较大,大致可分为两部分来完成,其探测(迭代)过程如图2.4所示。

2.2.3.2.1 确定极小值所在的区间

采用的是一种直接探测法,做法可归纳如下。

第一步:给定探测方向x、初值点x0和初始步长Δx,计算φ(x0)和φ(x0+Δx),若φ(x0+Δx)≤φ(x0),转向第二步;若φ(x0+Δx)>φ(x0),则取-Δx为步长Δx,转向第二步。

第二步:计算xk+1=xk+Δx,计算φ(xk+1)。

第三步:如果φ(xk+1)≤φ(xk),以2Δx为新步长代替Δx,且用k代表k+1,转向第二步。

如果φ(xk+1)>φ(xk),则以xm表示xk+1,以xm-1表示xk,将上步的xk作为xm-2,并计算

地球物理数据处理教程

第四步:在4个等距点(xm-2、xm-1、xm+1、xm)中,去掉四点中离φ(x)最小点最远的那一点,即或是xm,或是xm-2,剩下的三点按顺序以xα、xb、xc表示,其中xb为中点,那么(xα,xc)区间即为极小值所在的区间。

2.2.3.2.2 用二次函数拟合法求极小点

将上面已确定的等距的 xα、xb、xc三点及 φ 值,用二次函数拟合法即用公式(2.2.3)求得极小点,令为x*点。再将xα、xb、xc、x*四点中舍去φ值最大的点,剩下的点重新令为α、b、c,则又得三点和它们相应的φ值,用公式(2.2.2)求其极小点x*,如此反复使用公式(2.2.2),逐步缩小极小值的区间,一直到两次求得的极小点位置差小于事先给定的精度为止,x*点即为极小点。

图2.4 DSC-Powell法示意图

2.2.4 广义最小二乘法(Gauss 法)

重磁反问题中的最优化方法,一般是指多参量的非线性最优估计问题,理论模型异常z=f(

,b1,b2,…,bn)是参数bi(i=1,2,3,…,n)的非线性函数,其中

=(x,y,z)为测点的坐标。由前已知ΔZk(k=1,2,…,m)表示在第k个观测点

上的实测异常,现在要寻求与观测异常相对应的理论模型的参量值bi(i=1,2,…,n),使理论异常与实测异常的偏差平方和

地球物理数据处理教程

为极小。

设bi的初值为

,则上述问题,即是要求修正量δi,使

地球物理数据处理教程

代入φ中,使φ获得极小。

高斯提出了首先将f函数线性化的近似迭代方法,即将f在

处按台劳级数展开取其线性项。

地球物理数据处理教程

式中

地球物理数据处理教程

给出后,

均可直接计算出来。将台劳展开式代入式(2.2.6)中,目标函数φ为

地球物理数据处理教程

要求

使φ取得极小,根据极小的必要条件

地球物理数据处理教程

将上式化为

地球物理数据处理教程

写成方程组形式

地球物理数据处理教程

式中:

(i,j=1,2,…,n)

再写成矩阵形式,有

地球物理数据处理教程

地球物理数据处理教程

其中

A=PTP

地球物理数据处理教程

式中:P称为雅可比(Jacobi)矩阵,是理论模型函数对参量的一阶导数矩阵。A为正定对称矩阵,实际计算时,当实测异常值已给出,模型体的初值

已选定后,A和

即可计算出,求解方程(2.2.7)即可求出

,从而可得

上面推导出的方程(2.2.7)是将f线性化所得,因而只有当f为真正的线性函数时,

才是真正的极小点

,即一步到达极小;当f为非线性函数时,台劳式线性化仅为近似式,近似程序视

的大小而定,当|δi|较大时,二次以上项忽略的误差就大,反之就小,所以对于非线性函数

不能简单地作为极小点

,一般将

作为新的初值

再重复上述做法,再解方程(2.2.7)又得到新的

,反复迭代下去,直到满足精度要求为止(例如|δi|小到允许误差)。

在高斯法应用中常常出现一种困难,即迭代过程不稳定,当

过大时,台劳展开的高次项太大而不能忽略时,就可能发生这样的情况,即用方程(2.2.7)求得的解,得到的参量

所对应的φ值大于

所对应的φ值,那么它将不能稳定地收敛于φ的极小值,即是出现了发散的情况,一般说来当f非线性程度越明显时,越易出现发散的情况。

因此高斯法的一种改进形式如下,即不直接把

作为校正值,而将它作为校正方向,记为

,而在该方向上用单变量求极小的方法寻找在这个方向上的极小点,即寻找一个α,使目标函数φ(

)为极小,取

作为新的初值,再继续迭代(0<α<1)。

把这个改进的方法称为广义最小二乘法,它使迭代过程的稳定性有所改善,即使这样当初值取得不好时,也有可能出现不收敛。

2.2.5 最速下降法

从前述已知,我们的目的是要求目标函数的极小,高斯法是利用将f函数线性化,建立一个正规方程(2.2.7)来求取修正量的,最速下降法是另一类型方法,它直接寻找φ函数的下降方向来求取修正量,所以它又称为直接法,而高斯法又称为间接法。

从目标函数φ出发来寻找其下降方向

地球物理数据处理教程

始终是大于或等于0,因此它一定有极小存在,我们首先考虑初值点

的一个邻域内,将φ在

处台劳展开取至线性项,有

地球物理数据处理教程

希望寻找使Φ下降的方向,即要找新点

,使φ(

)<φ(

即要求φ(

)-φ(

)>0,

且越大越好,那么可得

地球物理数据处理教程

地球物理数据处理教程

式中

表示φ函数对

的各分量的导数所组成的向量,即梯度向量。

要使上式取极大,有

地球物理数据处理教程

上式说明了φ值下降最快的方向

,应该是与梯度方向

相反的方向,即负梯度方向,那么修正量就应在负梯度方向上来求取。下面讨论从

出发,沿负梯度方向上求取极小点的方法,除了用前面介绍过的方法外,在此再介绍一种近似计算方法。

要求从

出发,沿-

方向的极小点,即要求λ使φ

为-

方向上极小点。根据极小必要条件,有

地球物理数据处理教程

如果φ为二次函数时,λ可以直接解出,在重磁反问题中φ为非二次函数,且函数形式较复杂,一般无法直接解出λ,而采用近似法,先将φ(

)台劳展开,取至线性项,即

地球物理数据处理教程

假设粗略认为φ的极小值为零,则极小点的λ应有

地球物理数据处理教程

这个方法计算简单,但误差较大,特别是

远离真正极小点

时,φ值较大,上式的假设不适合,当接近真极小点

附近时,可以采用。但在重磁反问题中,由于实测值Zk中含有干扰成分,所以即使到了

附近,φ值仍不会为零,因而上述计算λ的方法不能直接采用,可将上述计算的λ作为一个区间估计值,再用其他方法计算[0,λ]之间真正的λ值。

从上所述可将最速下降法叙述如下:从初值

出发,沿着φ(

)的负梯度方向-

)寻找极小点

,然后又从

出发,沿着φ(

)的负梯度方向-

)寻找极小点

,一直迭代下去,直到找到

为止。

由于这个方法是沿着初值点的最快下降方向,在该方向上如果采用单方向求极小的方法得到该方向上的极小点,那么又称“最优”、“最速”下降法。但需要指出的是,所谓“最速”是就初值点的邻域而言,所谓“最优”是指在初值点的负梯度方向上,所以它的着眼点是就局部而言,就初值点邻域而言,而对整体往往是既非“最优”,又非“最速”,而是一条曲折的弯路,难怪有人称它为“瞎子下山法”,如图2.5所示,当φ的等值面为拉长的椭球时更是如此。但它有一个十分可贵的优点,即在迭代的每一步都保证φ值下降,所以它是稳定收敛的,在φ函数复杂时,计算工作量较大些,对于大型计算机比较适用。

图2.5 最速下降法迭代过程示意图

图2.6 修正量的方向

2.2.6 阻尼最小二乘法(Marguardt)

比较上述两种方法可知,Gauss法修正量的步长大,当φ近于二次函数,可以很快收敛,但当φ为非二次函数,初值又给得不好时,常常引起发散。而最速下降法却能保证稳定的收敛,但修正量的步长小,计算工作量大。当φ的等值面为拉长的椭球时,Gauss法的修正量

和最速下降法的修正量

之间的夹角γ可达80°~90°,如图2.6所示。

对于φ为二次函数的情况下,高斯法的修正量

方向是指向φ的极小点,而最速下降法修正量

的方向是垂直于通过

点的φ函数等值面的切平面。因而当φ为比较复杂的函数时,有可能使

出现发散而失败。

阻尼最小二乘法是在Gauss法和最速下降法之间取某种插值,它力图能以最大步长前进,同时又能紧靠负梯度方向,这样既能保证收敛又能加快速度。它的基本思想是:在迭代过程的每一步,最好尽量使用Gauss法修正量方向

,以使修正步长尽可能地增大,如当这种情况下不能收敛时,再逐步改用接近最速下降的方向

,同时缩小步长,以保证收敛,下面以

表示由阻尼最小二乘法得出的修正量。

实现上述思想只要将方程

地球物理数据处理教程

改变为

地球物理数据处理教程

就能实现了。式中

为我们所要求的修正量,即称Marguardt修正向量,I为单位矩阵,λ是用来控制修正方向和步长的任意正数,又称阻尼因子,它起到阻止发散的作用,方程(2.2.9)中

显然是λ的函数,即

地球物理数据处理教程

通过这一改变后,即原来的正规方程(2.2.7)系数矩阵的主对角线上加一正数,从而使条件数得到了改善。如果原来A是奇异的,而A+λI可成为正定的,设原来A的最大特征值和最小特征值为μmax和μmin,则条件数就发生了如下变化:

地球物理数据处理教程

使病态条件数改善,对于计算来说,是十分有利的。

从方程(2.2.7)可看出,右端项为

地球物理数据处理教程

而φ的负梯度向量

的第i个分量

地球物理数据处理教程

所以

,即方程(2.2.7)、(2.2.9)的右端项

的方向即为负梯度方向,值为负梯度值的一半。

在方程(2.2.9)中,当λ=0时,即是(2.2.7)方程,这时

就是

;当λ→∞时,δ0

,而

是负梯度方向,这时

就是最速下降方向,所以阻尼最小二乘法的修正量

,是最速下降修正量

和Gauss法修正量

之间的某种插值,λ就是这种插值的权系数。

Marguardt向量

具有以下三个特性:

(1)当λ越来越大时,

的长度越来越小,且

地球物理数据处理教程

‖表示

向量的范数,也即是它的长度。

(2)当λ由零逐渐增大时,

的方向逐渐由Gauss法的方向

转向最速下降法方向

,λ越大,

方向越接近

方向。

(3)对λ>0的任意正数,

(满足方程(2.2.9))使φ在半径为‖

‖的球面上取得极小。

图2.7Δ0(λ)随λ的变化情况示意图

以上三个性质说明,当λ逐渐增大时,

的方向由

靠近,它的大小‖

‖逐渐减小,λ→∞时,‖

‖→0,如图2.7所示。因此在迭代的任何一步,我们总可以找到充分大的λ,来保证稳定的收敛,因为当φ 不下降时,就加大λ向

靠,一直到使φ下降为止,从而保证收敛。性质(3)说明在跨出同样的步长时,以

(λ)方向最好,这就保证了该法的优越性。在实际计算时,总是在保证收敛的前提下,取较小的λ,以获得较大的步长前进。

下面介绍阻尼最小二乘法的迭代步骤,即实际计算过程。

(1)给出模型体参量初值

,计算φ(

);给出实测场值ΔZk(k=1,2,…,m);给出阻尼因子的初值λ(0)及改变λ的比例系数v。

(2)开始迭代,λ=λ(0)/v

(3)计算A,(A+λI)及右端项

在初值点

的值,得方程(2.2.9),(A+λI)

的系数矩阵及右端项。

(4)求解方程(2.2.9)得

(5)计算

及φ(

)。

(6)比较φ(

)和φ(

)。

若φ(

)<φ(

),则该次迭代成功。判断

是否满足精度要求,若满足停止迭代,这时的

即为极小点

;若不满足精度要求,则将

作为新

,φ(

)作为新φ(

),减小λ作为新的λ(0),转向第(2)步,继续迭代下去。

若φ(

)>φ(

),则该次迭代失败,增大阻尼因子λ,将λ·v作为新的λ,转向第(4)步,即重新求解(A+λI)

方程,重新得到新的

该方法中阻尼因子λ的选择十分重要,上述选法是一种简单可行的方法,还有很多不同的选择方法,可参阅有关的书籍。

Ⅵ 西安电子科技大学理学院的科研简介

物理系科研项目
物理系在研自然科学基金项目及国防预研项目37项,总经费681万元
1.国家自然科学基金项目与国家863项目
(1)《随机介质中分形散射》
(2)《非球形粒子对有限波束的散射及在相多普勒中的应用》
(3)《目标环境光散射特性的建模与仿真》
(4)《随机分布簇团粒子光散射和应用》
(5)863项目《低轨卫星光谱散射特性与仿真模型》
(6)随机系统法在电磁波复合散射极化问题中的应用(2002-2004)
(7)光外调制光折晶体波导波分复用和动态光互连的研究
(8)国家863 项目:“微型二维电寻址液晶光阀空间光调制器的研究”
(9)国家“863” 项目:“大容量快速体全息存储器研究”
(10)超高密度、超快速度光信息存储和处理基础研究”
(11)国家自然基金“用于场离子显示屏中场离子发射板的复合材料研究”
(12)国家自然基金“超短脉冲激光诊断微腔的光学特性”
3.国防预先研究项目(八五、九五和十五)
(1)目标激光散射特性研究
(2)三毫米线、面散射体散射特性及干扰机理研究
(3)目标电磁散射特性理论建模及应用技术
(4)典型军用目标红外特性采集和建模
(5)目标激光散射特性测量与理论建模
(6)地海杂波电磁散射建模及其应用技术研究
(7)目标电磁散射和光学特性集成模型软件
(8)激光武器目标双站散射特性研究
(9)电磁波大气传播衰减特性研究(2003-2005)
(10)大气反常传播及其通信和侦察应用研究(2004-2006)
4.国防科技预先研究基金(含重点实验室)项目
(1)目标材料表面双向反射分布函数研究
(2)战场环境毫米波、红外传输特性研究
(3)激光双向反射特性的表面因子影响和几何缩比关系的研究
(4)计算雷达目标双向散射的边缘电磁流方法研究
(5)目标与背景对有限波束的散射和光谱反射特性研究
(6)分形几何在地、海杂波散射中的应用
(7)干扰云团中复合电磁散射特性及特征提取与识别研究
(8)低轨卫星光散射特性研究低轨卫星光散射特性研究
(9)海面背景对激光、阳光光谱散射与辐射特性研究
(10)中段弹头与诱饵激光散射特性
(11)目标激光近场散射特性建模与仿真
(12)低轨卫星可见光散射稳定特性的分析研究”
(13)国防工委激光空域强度分布测试系统科研项目
其他项目
(1)激光超短脉冲研究微腔光学特性,教育部“优秀青年教师资助计划”
(2)超短脉冲激光诊断微腔的光学特性,国家自然基金
(3)低轨卫星可见光散射稳定特性的分析研究,国防科技重点实验室基金
(4)激光脉冲与小粒子的相互作用,留学回国人员科研基金数学系科研项目:
1.流密码强度度量与新型流密码的研究 肖国镇国家教委91-94年3.2万
2.微波宽带低频噪声高增益场效应(FET)放大器优化设计的研究(J92.07.10) 陈开周电科院92-94年4.5万
3.分组密码强度与稳定性分析(J92.08.07)肖国镇电科院92-94年5万
4.图象快速处理中计算方法的研究(91.J1A.04) 陈开周国防科工委92-93年3万
5.零知识证明及其在信息安全协议中的应用 肖国镇国家保密局92-94年5万
6.信息安全科技情报研究 肖国镇国家保密局92-95年2万
7.基于神经网络和信息熵的最优化方法 刘三阳国家教委92-95年2.1万
8.序列密码及网络信息安全(L1-16)肖国镇中央办公厅一局92-95年5.5万
9.智能卡理论与军用研究(DJ.93.8.7)何大可电科院93-95年4万
10.KU波段固态震荡源突变机制及实验研究(92J8.01)李家贤国防科工委93-94年4.5万
11.小波理论及其在图象压缩中的应用(DJ94.1.7)宋国乡电科院94-96年4万
12.分组密码整体结构与算法分析(DJ94.3.3)肖国镇电科院94-96年4万
13.图象处理的图像代数模型的研究(94SL09)屈家淦陕西省科委94-96年0.5万
14.电磁场边值问题的小波算法研究 冯象初国家自然科学基金95-96年7万
15.遥感图像数据压缩的小波方法研究 傅 瑜北京大学96-98年1万
16.多安全级密码算法研究(31.2.1.3)肖国镇电科院96-00年7万
17.新型分组密码与流密码的稳定性理论与算法研究(DJ964.3.1.3)肖国镇电科院96-98年5.5万
18.保密通信中流码技术的研究 肖国镇东南大学96-98年1万
19.神经网络的拓朴与优化 刘三阳国家教委96-97年3万
20.基于Petri网的DEDS控制与调度方法的研究 邢科义国家自然科学基金委96-98年 6.5万
21.小波算法在稀土电热场的结果分析中的应用 宋国乡西北大学97-98年3万
22.基于Petri网的Fms建模、控制与优化方法的研究(957 0818) 邢科义西安交通大学95-97年1万
23.电磁散射特性的建模及小波算法研究(DJ977.2.21) 宋国乡电科院97-99年4.5万
24.制造系统建模、控制与调度 邢科义西安交通大学97-99年2万
25.遥感图像数据压缩的小波方法研究 傅瑜北京大学96-97年1万
26.发光动力学中若干数学问题 颜黎5760797-97年0.35万
27.基于子波变换的阵列信号处理研究(97X03) 李有明陕西省科委97-00年1.5万
28.代数群伪子群结构与表示理论 王宪栋国家自然科学基金98-00年0.8万
29.二层系统决策问题的研究(98G01) 刘三阳陕西省科委98-00年2万
30.离散事件/混杂系统及其在FMS中的应用研究 邢科义国家教育部99-01年6万
31.调幅-调频信号的稳健滤波和非线性参数估计 方法研究(99J7.2.6) 毛用才总装基金办99-01年7万
32.多目标集值优化方法及应用(99SL02) 盛宝怀陕西省科委99-01年1.5万
33.高强度分组密码的研究(99X06) 胡予濮陕西省科委99-01年2万
34.语音处理技术中小波算法研究 赵瑞珍北京大学99-00年1万
35.多媒体中图像语音的小波算法研究(990) 宋国乡华为公司99-00年2万
36.偏微分方程数值解的多小波方法(2000SL02) 冯象初陕西省科技厅00-02年1.5万
37.网络优化及其在计算机通信网中的应用(2000SL03) 刘三阳陕西省科技厅00-02年2万
38. DEDS控制优化及其在FMS中的应用研究 邢科义国家自然科学基金00-02年12万
39. 计算机通信网中的多点传送路由算法研究 刘三阳国家自然科学基金00-02年10万
40.异质生长碳化硅MESFEF器件特性研究(00J82。1) 宋国乡总装基金办00-02年8万
41.ISN国家重点实验室访问学者基金 胡予濮00-02年5万
42.多分量非平稳信号处理的新方法及其应用研究 毛用才国家自然科学基金委00-02年15万
43.相关域多速率滤波器组设计及其应用(001 2254)水鹏朗教育部00-01年6万
44.主分量多小波理论及其应用 水鹏朗 国家自然科学基金委00-02年14万
45.广义自缩序列的生成与安全性分析 胡予濮国家自然科学基金委02-05年22万
46.半定规划与网络优化研究刘三阳教育部跨世纪优秀人才基金 03-05年30万
47.组合优化中的半定规划方法(2001SL05)刘红卫陕西省科技厅00-02年2万
48、解两类复杂优化问题的进化算法(2001SL06)王宇平陕西省自然科学基金01-04年1.5万
49、DNA计算在网络最优化中的应用(2002A12)高淑萍陕西省自然科学基金02-04年1.5万
50、通信网可靠性的数学模型与算法研究(2002A13)冯海林陕西省自然科学基金02-04年1.5万
51、非线性自适应迭代学习理论及应用(2002A15)李俊民陕西省自然科学基金02-04年1.5万
52、国家优秀博士论文作者专项基金(2001036)水鹏朗国家行动计划02-06年60万
53、非一致目标跟踪的自适应迭代学习控制理论与应用 李俊民国冢自然科学基金04-06年21万
54、复杂多目标规划及不可微双层规划的进化算法研究 王宇平国冢自然科学基金04-06年21万
56、密码函数的设计与安全性分析 胡予濮GF实验室基金02-03年10万
57、基于小波的专用模拟电路故障分析 宋国乡GF实验室基金04-05年14万
58、粗糙集理论及其在多目标决策中的应用(2003A09)刘三阳陕西省自然科学基金03-05年1.5万
59、半定规划的算法和应用(2004A05)王新辉陕西省自然科学基金04-06年1.5万
60、WDM光网络数学建模与性能优化(2004A02)齐小刚陕西省自然科学基金04-06年1.5万最后更新 2005-07-17 17:59

Ⅶ 最优化理论算法

本书是陈宝林教授在多年实践基础上编着的.书中包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K?T条件、无约束最优化方法、约束最优化方法、整数规划和动态规划等内容.本书含有大量经典的和新近的算法,有比较系统的理论分析,实用性比较强;定理的证明和算法的推导主要以数学分析和线性代数为基础,比较简单易学.本书可以作为运筹学类课程的教学参考书,也可供应用数学工作者和工程技术人员参考。

Ⅷ 最优化计算方法 陈开周的教材、答案的电子版 [email protected] 谢谢!

Ⅸ 最优化方法数学

最优化方法简单,就是运筹学,高中就学过,比如一些简单的线性规划,里面就是一些固定的模式化方法,考试前记下就能考高分,数理统计还是很烦琐的,是数学专业的基础课,有点难度的,计算方法呢,也是一些固定的模式公式,但公式比较多而且比较烦琐,计算难度大。三个相对来说,就难度与计算复杂程度来看,最优秀化方法相对简单。

阅读全文

与最优化计算方法陈开周相关的资料

热点内容
二头最佳锻炼方法 浏览:914
如何做甜点和做蛋糕最简单的方法 浏览:692
膝盖有积液用什么方法能快速消肿 浏览:347
英语如何用好的方法呈现形容词 浏览:394
原酒怎么储藏方法 浏览:486
行业研究报告分析方法 浏览:677
可口可乐解决负面影响的方法 浏览:614
膝关节检测方法养生堂 浏览:372
饿了么引流有哪些方法 浏览:381
扣安全带方法图片 浏览:637
冰箱的冰快速溶解的方法 浏览:54
红茶的制作方法发源地是哪里 浏览:605
正确的科学发声方法是哪里用力 浏览:400
高效沟通技巧和方法图片 浏览:292
初五接财神正确方法动图 浏览:720
动物胃肠炎的治疗方法 浏览:359
高冰岫玉的鉴别方法 浏览:87
聚氯乙烯胶水快速干的方法 浏览:363
飞机合页的安装方法 浏览:637
华为平板电脑录音在哪里设置方法 浏览:874