导航:首页 > 计算方法 > c组合公式的计算方法

c组合公式的计算方法

发布时间:2022-01-10 03:41:24

㈠ 数学的排列组合公式C(n,m)的计算

公式中,前面列出三项是要让人看出规律,真正的项数未必有这么多。错误是最后多写了(5-3+1),也就是前面写了 (5-2)后,后面就没有了,因为它就是最后一项 5-3+1 。

排列a与组合c计算方法

计算方法如下:

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。

组合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!

例如A(4,2)=4!/2!=4*3=12。

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。

排列组合中的基本计数原理

(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

㈡ 排列组合公式谁知道,就是c几几的,怎么

大写字母C,下标n,上标m,表示从n个元素中取出m 个元素的不同的方法数.如从5个人中选2人去开会,不同的选法有C(5,2)=10种。

C(n,m)的计算方法是C(n,m)=n!/[m!(n-m)!]=n*(n-1)*...*(n-m+1)/[1*2*...*m],如C(5,2)=[5*4]/[1*2]=10。

(2)c组合公式的计算方法扩展阅读:

1772年,法国数学家范德蒙德(Vandermonde, A. - T.)以[n]p表示由n个不同的元素中每次取p个的排列数。

瑞士数学家欧拉(Euler, L.)则于1771年以 及于1778年以 表示由n个不同元素中每次取出p个元素的组合数。

1830年,英国数学家皮科克(Peacock, G)引入符号Cr表示n个元素中每次取r个的组合数。

1869年或稍早些,剑桥的古德文以符号nPr 表示由n个元素中每次取r个元素的排列数,这用法亦延用至今。按此法,nPn便相当于n!。

1872年,德国数学家埃汀肖森(Ettingshausen,B. A. von)引入了符号(np)来表示同样的意义,这组合符号(Signs of Combinations)一直沿用至今。

1880年,鲍茨(Potts , R.)以nCr及nPr分别表示由n个元素取出r个的组合数与排列数。

1886年,惠特渥斯(Whit-worth, A. W.)用Cnr和Pnr表示同样的意义,他还用Rnr表示可重复的组合数。

1899年,英国数学家、物理学家克里斯托尔(Chrystal,G.)以nPr,nCr分别表示由n个不同元素中每次取出r个不重复之元素的排列数与组合数,并以nHr表示相同意义下之可重复的排列数,这三种符号也通用至今。

1904年,德国数学家内托(Netto, E.)为一本网络辞典所写的辞条中,以Arn表示上述nPr之意,以Crn表示上述nCr之意,后者亦也用符号(n r)表示。这些符号也一直用到现代。

参考资料来源:网络-排列组合

㈢ 组合c的计算公式是什么

排列组合c的公式:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。(n为下标,m为上标)。例如C(4,2)=4!/(2!*2!)=4*3/(2*1)=6,C(5,2)=C(5,3)。

排列组合c计算方法:C是从几个中选取出来,不排列,只组合。

C(n,m)=n*(n-1)*...*(n-m+1)/m!

例如c53=5*4*3÷(3*2*1)=10,再如C(4,2)=(4x3)/(2x1)=6。

注意事项:

1、不同的元素分给不同的组,如果有出现人数相同的这样的组,并且该组没有名称,则需要除序,有几个相同的就除以几的阶乘,如果分的组有名称,则不需要除序。

2、隔板法就是在n个元间的n-1个空中插入若干个隔板,可以把n个元素分成(n+1)组的方法,应用隔板法必须满足这n个元素必须互不相异,所分成的每一组至少分得一个元素,分成的组彼此相异。

3、对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其他元素。

㈣ 排列组合中A和C怎么算啊

排列:

A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)

组合:

C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!

例如:

A(4,2)=4!/2!=4*3=12

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

(4)c组合公式的计算方法扩展阅读:

排列组合的基本计数原理:

1、加法原理和分类计数法

加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。

那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

2、乘法原理和分步计数法

乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

合理分步的要求:

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

与后来的离散型随机变量也有密切相关。

㈤ 数学概率C怎么计算

排列(有顺序):mAn=m*(m-1)*.....*(m-n+1)

组合(无顺序):mCn=m*(m-1)*.....*(m-n+1)/(1*2*...*n)

等可能事件:P(A)=m/n

互斥事件:P(A+B)=P(A)+P(B)

P(A·B)=0

独立事件:P(A·B)=P(A)·P(B)

公式:C(m/n)[m在上n在下]=n×(n—1)…(n—m+1)/m

拓展资料

概率统计是研究自然界中随机现象统计规律的数学方法,叫做概率统计,又称数理统计方法。概率统计主要研究对象为随机事件、随机变量以及随机过程。

概率统计是应用概率的理论来研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的,并可以控制发生错误的概率。

参考资料:网络-概率统计

㈥ 概率 c 怎么计算

在概率中,C表示组合数。

是从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数。

C(n,m) 表示 n选m的组合数,等于从n开始连续递减的m个自然数的积除以从1开始连续递增的m个自然数的积。

(6)c组合公式的计算方法扩展阅读:

在重复组合中,从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,称为从n个元素中取m个元素的可重复组合。当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。

㈦ 排列组合中那个C怎么算

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)


组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;


例如A(4,2)=4!/2!=4*3=12


C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

(7)c组合公式的计算方法扩展阅读:

排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

计算公式:

;C(n,m)=C(n,n-m)。(n≥m)

其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

㈧ 排列与组合的计算公式并举例说明! 例如说,C(5,3)怎么算A(5,3)又怎么算..

C(5,3)从5个元素选3个元素的组合数
例如从5个同学中选3个同学去参加会议
C(5,3)=(5×4×3)/(3×2×1)=A(5,3)/A(3,3) 组合中元素没有顺序之分
A(5,3)从5个元素选3个元素的排列数
例如从5个同学中选3个同学站一排照相,A(5,3)=5×4×3(排列中元素有顺序之分)

如何计算概率组合C

概率组合C(m,n)的计算公式为:

(9)c组合公式的计算方法扩展阅读:

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

㈩ 数学中c怎么计算

组合数C(n,m)的计算公式为:

,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。

阅读全文

与c组合公式的计算方法相关的资料

热点内容
小飞蛾的最佳消灭方法 浏览:898
快速背知识的方法 浏览:651
硒鼓用什么方法打不开 浏览:661
如何学好语文教学方法 浏览:561
等差的最佳方法 浏览:966
失眠恢复训练的方法 浏览:235
高三升学最佳方法 浏览:188
租赁车的技巧和方法 浏览:609
房屋用粘钢方法加固如何检测强度 浏览:578
食用油哪几重提炼方法 浏览:690
手机检测手机真假有几种方法 浏览:969
氧传感器检测方法深圳 浏览:452
子类调用父类方法时如何处理变量 浏览:422
番茄豆苗种植方法 浏览:595
手环检测仪使用方法 浏览:384
正确发声训练方法 浏览:56
东莞哪里有塑料内饰划痕处理方法 浏览:373
浴室肌肉锻炼方法 浏览:757
如何diy扎染方法图解 浏览:379
13儿童鼻窦炎治疗方法 浏览:624