㈠ 端氏多分支水平井工程技术
一、煤层气多分支水平井的井型和设计优化
(一)多分支水平井命名规则
井名分4种:工程井、生产井、主水平井、分支水平井。
井名的命名一般采用如下规则,井名由区块、工程井、翼数、生产井组成。如DS01-1V,DS表示“端氏”区块名称,以汉语拼音首个字母缩写;01表示第一个工程井,-1表示第一个翼,-1V表示该翼的生产井,-L1表示第一个分支水平井。
生产井用V表示,如DS01-1V。主水平井用M表示,如DS01-1-M。分支水平井用L表示,如DS01-1-Ln,n为分支数目(图6-1)。
图6-1 多分支水平井井名的命名规则
多分支水平井由工程井和生产井组成一翼,工程井包括直井段、造斜段和水平段,水平段包括主支和分支。生产井为直井,在煤层段造洞穴,并与水平段连通(图6-2)。
图6-2 单翼多分支水平井生产井和工程井组合图
为了提高井场利用效率,在一个井场可以设计一翼到四翼多分支水平井,使分支水平井网络布满煤层的抽排面积。
(二)井型分类
示范工程共实施6口多分支水平井,对5种类型的井进行了试验。
1.按工程井和生产井组合分类
按工程井和生产井组合情况,分为工程井和生产井分离的多分支水平井、工程井和生产井合一的多分支水平井。前者如DS01-1、DS02-1、SX01-1(图6-3),后者如PHH-001、PHH-002(图6-4)。
图6-3 工程井和生产井分离的多分支水平井
图6-4 工程井和生产井合一的多分支水平
2.按主支数量分类
按主支数量,本次可以分为单主支多分支水平井和双主支多分支水平井,如PHH-001、PHH-002、DS02-1、SX01-1(图6-5)。
3.按完井类型分类
按完井类型,本次进行末端对接试验,采用单支水平井,分工程井和生产井,因此称为末端对接水平井。例如DS20-1、GSS-008-L1、BD4-L1~BD4-L4(图6-6)。
图6-5 单主支多分支水平井
图6-6 末端对接水平井
4.不同类型井优点
这些类型不同的多分支水平井,针对不同的地形、地质条件和煤层特征进行设计和部署,以最低的工程成本,获得最好的生产效益。
单翼双主支多分支水平井,如DS01-1井,优点在于施工方便,主井眼不易损坏,有利于井壁保持稳定,避免由于工程施工中频繁活动而导致井壁坍塌,堵塞井眼。同时有利于增加分支井数,增大排泄面积。
工程井和生产井合而为一,如PHH-001、PHH-002井,优点是节省工程量,降低成本,减少技术难度,不用进行两井连通的高难度高技术施工程序。缺点是井下泵无法下到近煤层的低位位置,距煤层距离一般还有20m左右,泵只能下到弯曲区段,因此,抽油机杆易被磨损。
单翼双主支多分支水平井和工程井、生产井合而为一的多分支水平井的设计,是一种创造性地设计,在本项目得到第一次应用和试验,是一次具有创造性的实践,具有非常重要的意义,推广价值巨大。
(三)井型设计和优化
水平井井型设计和优化对钻井的成功具有重要意义。DS01-1等利用landmark设计软件优化多分支水平井施工设计。PHH-002等井轨迹采用兰德马克的Compass钻井轨迹设计软件包完成,钻井轨迹采用双增剖面双控制点,第一剖面采用曲率半径较大,造斜率较低;第二剖面采用曲率半径较小,造斜率较高,既降低了施工难度,又保证了轨迹控制,确保了在15号煤层的顺利着陆。
1.井身结构
(1)工程井井身结构。一开:φ311.1mm钻头开钻,下入φ244.5mm表套,水泥返至地面。二开:φ215.9mm钻头开钻,下入φ177.8mm技套,水泥返至地面。三开:φ152.4mm钻头开钻,下入主水平井及若干分支水平井,裸眼完井(表6-1、表6-2,图6-7)。
表6-1 DS01-1井钻头程序
表6-2 DS01-1井钻头程序套管程序
图6-7 工程井井身结构示意图
(2)生产井井身结构。一开:φ311.1mm钻头开钻,下入φ244.5mm表套,水泥返至地面。二开:φ215.9mm钻头开钻,下入φ177.8mm技套,水泥返至地面;煤层段下玻璃钢套管,造穴(表6-3、表6-4)。
表6-3 DS01-1V井钻头程序
表6-4 DS01-1V井钻头程序套管程序
2.钻具组合
钻具组合见表6-5。
表6-5 DS01-1井钻具组合表
3.钻井程序
钻井程序见图6-8。
图6-8 施工工艺流程图
4.钻井液性能
钻井液性能要求如表6-6。
表6-6 钻井液性能要求
5.多分支水平井工程技术参数
多分支水平井工程技术参数如表6-7。
二、钻井工艺技术
(一)工程井钻井工艺
在工程井钻井施工作业中分三开作业,作业流程和工艺详述如下:表层一开,下表层套管固井;直井和造斜段二开,造斜点定向钻进至煤层顶板着陆点,下套管固井;煤层水平段位三开,两井对接连通钻进,主井眼及分支井眼水平段钻进,裸眼完井。
表6-7 多分支水平井技术参数
续表
(二)生产井钻井工艺
(1)一开用311.1mm钻头钻入基岩层2~5m后,下入φ244.5mm的套管并固井,水泥浆返至地面。
(2)候凝16h后二开,用φ215.9mm的钻头钻至3号煤层底板下60m,循环干净后起钻,进行标准测井,准确确定煤层位置。
(3)测井后下入φ177.8mm的J55套管,煤层位置处带一根玻璃钢套管,然后用油井水泥固井,水泥返至3号煤层顶板200.00m以上,水泥浆密度1.85g/cm3。
(4)固井、候凝后,用φ152.4mm的钻头扫水泥塞,循环干净后起钻。
(5)根据煤层位置准确确定扫玻璃钢位置后,下钻扫玻璃钢套管,循环干净后起钻。
(6)准确确定煤层位置后,下入掏穴工具至掏穴位置顶部,对煤层中部5.0m段掏穴,造穴井径不小于500mm,循环干净后起钻。
(7)计算好填砂量,下钻向井内投砂至预定深度,准确探定砂面后起钻。
(8)将井场恢复至进场状态。
(三)大位移分支水平井钻井和悬空侧钻技术
1.大位移分支水平井钻井
斜深与垂深之比大于1.8的水平井称大位移水平井。其难度为钻进中摩阻大,滑动钻进加压困难。采用钻具倒装,多旋转少滑动,保证井眼平滑等措施减少摩阻。同时,随井深摩阻增大,需入减阻器(Agitator)帮助克服摩阻。
2.悬空侧钻技术
在煤层段侧钻,不可能像油气井填水泥候凝侧钻。侧钻时没有井壁支撑,增加了侧钻难度。采用选好侧钻点和控制钻时等措施来保证侧钻成功率。
根据实钻井眼轨迹数据及DS01-1-L1靶点地质调整结果,做DS01-1-L1剖面数据。
起钻至L1井的侧钻点位置,开始循环拉槽,定向、侧钻。根据主井眼滑动调整轨迹时工具的造斜率,确定侧钻分支时马达的弯角。
侧钻时稳定工具面后,采取连续滑动的方式,尽快侧钻出新井眼。钻进5m后逐渐加快机械钻速,侧钻结束后,进行LWD实时测井。
滑动侧钻及转盘稳斜钻进均在煤层中钻进,注意摩阻扭矩的变化。
钻完L1井后,循环20min。起钻至L2井的侧钻点位置。重复上述步骤,完成其余分支井眼的作业。
起钻至井口,关闸板防喷器,准备完井作业。
PHH-001井在后期施工中采用了两次侧钻进行两个分支井的施工。在侧钻时,主要做好了侧钻点、侧钻钻头、井下造斜工具、钻具组合、钻进方式的选择等工作,侧钻效率较高,一般2h能形成完整的新井眼。
(四)综合录井
1.地质录井
地质录井主要是岩屑录井和钻时录井,并取全、取准各项原始数据,以获取地质资料建立钻井地层柱状。岩屑、钻时录井:一开井段不做要求,进入基岩风化带超过20.00m,一开井深50.20m;二开、三开按设计要求进行录井工作。
(1)岩屑录井。岩屑录井是建立地层柱状的依据,也关系到钻井施工等相关作业。严格按照《地质录井作业规范》的要求,加强录井前的各项准备工作。捞取岩屑严格按照录井规范做到不漏包、不丢包;清洗岩屑根据不同岩性采用不同工具和方法,保证了岩屑的数量和质量。岩屑描述实行专人负责,同时参考钻时等有关资料,准确鉴定岩煤屑,为建立地层柱状提供可靠的基础资料。
(2)钻时录井。钻时数据是绘制钻时曲线的依据,而钻时曲线是岩煤屑鉴定描述、进行地质分层的重要辅助资料,本井严格按照设计要求,准确地获取了全井的钻时数据。一开不要求;二开后进行钻时录井每0.5m记录1点,为绘制钻时曲线、划分地层、水平井定向钻进提供准确数据。
2.气测录井
(1)气测录井仪简述。本井录井使用的气测录井仪是上海神开科技工程有限公司生产的SK-2Q02C快速色谱录井仪,主要适用于煤层气、天然气的勘探、开发的仪器设备,它的核心部分为高灵敏快速色谱SK-3Q03氢焰色谱仪,SK-3Q03氢焰色谱仪是钻井勘探领域的浅层、薄层、地面导向的实时测量必备系统,是地面导向、薄层勘探、水平井勘探等钻井勘探获取钻井现场与科研第一手信息的重要仪器,一般的综合录井仪分析周期是2min,SK-3Q03氢焰色谱仪的分析周期是30s,使用它可发现0.5m以下的薄层煤层,是煤层气勘探开发的新一代综合录井仪。
(2)气测录井仪的使用。气测录井是根据钻井过程中钻遇煤气层,气体浸入泥浆钻井液中返出地面,经电动脱气器分离后进入色谱仪,从而分析出气体成分,是发现煤层气的重要手段,也关系到钻井施工等相关作业。本井严格按照《综合录井作业规范》的要求,加强录井前的各项安装准备工作。气测录井严格按照设计要求自二开至完钻进行全自动连续测量,每1m记录一点所测资料,全烃为连续记录曲线,做到不漏点、不漏测;对气测异常井段及时做出预报和初步解释,保障了水平井的顺利施工。
3.伽马录井
本井三开水平段钻进过程中,在MWD随钻测斜仪中增加伽马探管,利用自然伽马曲线在不同地层中的反映,特别是在煤层顶、底板为泥岩时,自然伽马曲线具有明显的幅值反映。能够分析判断钻头是否在煤层中,当钻头穿透煤层到达其顶底板时,能够及时调整MWD随钻测斜仪钻进参数,使钻头重新回到煤层中。利用伽马录井配合钻时、气测、岩屑录井,能够很好地分析解释钻头在煤层中水平钻进,起到地质导向的作用。
(五)测井
测井内容及要求如表6-8。
表6-8 煤层气多分支水平井测井内容及要求
三、定向和导向技术
(一)LWD随钻地质导向技术
“LWD”为随钻测井3个英文单词的简写。利用LWD导向,监测的主要参数是:地层自然伽马值和电阻率值,据此来判断钻头是在煤层中钻进,还是到了顶板或底板。地质师根据判断,要求定向井工程师随时调整井眼轨迹,最大限度保证在煤层中钻进(图6-9)。
DS01-1V井采取“转动+滑动”的复合钻进方式,以及LWD随钻实时测井,能有效地实现钻头在目标层中穿行,导向钻进不但要考虑煤层穿行率,同时还要考虑机械钻速。
二开造斜井段设计造斜段狗腿度11.081°/30m,剖面设计为双增圆弧剖面,连续造斜钻进至3号煤层顶部,钻至煤顶后,循环起钻,调整马达弯角。下钻时准确确定马达弯角方向,并预留反扭角;钻完第一柱后每单根测斜,定向井勤预测轨迹;在斜井段内钻具因故停止转动(洗井、测斜、机修、保养等)时,钻具需3~5min上提下放一次,活动距离不得小于6m,接立柱或起钻时,所卸接头需高于转盘面1~2m,钻进过程中不得转动转盘,接立柱时不得用转盘卸扣。
图6-9 地质导向示意图
二开钻进采用小钻压吊打,每50m测斜一次,保证井斜控制在2°以内。第二趟钻增斜调整方位,采用Sperry-Sun MWD 测量方式,定向方式为高边方式;第四趟钻通井处理泥浆后下套管,起钻测ESS多点;造斜钻进时,地质工程师每2m捞砂一次,注意地层变化,造斜钻进至煤层顶板后,控制钻速,进入煤层斜深1m结束二开。固井设计时,因造斜率比较高,决定少下扶正器,具体为:入井第1根套管最下端加刚性扶正器1只,100~380m井段每3根加弹簧扶正器1个每5根套管灌浆一次。
三开钻进,试压后钻入新地层1m,处理泥浆后起钻,接入“LWD+Motor”钻具组合,按定向井的要求井口作业及测试;下钻到底后,循环一周后导向钻进;LWD实时检测轨迹,保持井眼在煤层的中上部运移,钻进过程中,解释工程师密切注意实时测井曲线,发现双Y曲线异常波动,及时与地质监督沟通,并结合返出岩屑,判断井眼轨迹趋势,及时采取措施,特别注意钻入底部的粉煤层;注意震动筛煤的返出量,若返出量减少,立管压力(LWD及录井检测)波动大,采取控制转速等措施,保持井眼清洁;加强录井、LWD监测,及时反馈,尽可能保持井眼在煤层中上部穿行;各分支井眼钻进,进行LWD实时测井。
(二)MWD+伽马探管+钻时、岩屑、气测录井组合定向
PHH-001和PHH-002多分支水平井在水平段钻进中,采用MWD无线随钻测斜仪进行定向钻进,配合钻时录井、岩屑录井、气测录井、伽马录井等方法进行地质导向。极大地降低成本,获得了十分有效的定向结果。
根据地层性质,钻进煤层时,钻时小、伽马值低、甲烷气测值高;钻入煤层顶板泥岩时,钻时较大、伽马值极高、甲烷气测值较低;钻遇石灰岩时,钻时大、伽马值较高、甲烷气测值低。
煤层中施工水平井时,煤层钻遇率是工程成功与否的关键。在施工中,施工方根据煤层钻进的特点,总结一套有效保证煤层钻遇率的方法。煤层钻进时,气测显示值远高于在顶底板的气测显示值,钻时则明显低于钻进顶底板的钻时;同时,将伽马探管接在离钻头较近的位置,根据15号煤层低伽马显示值的特性,进行地质导向,取得了很好的效果,PHH-002井煤层钻遇率高达80.7%。
(三)无线随钻测斜定向技术
PHH-001、PHH-002井采用国产无线随钻系统进行钻井轨迹控制。在实际施工中,采用不同造斜率的螺杆钻钻进,RST-48型无线随钻系统电子探管将井底参数通过泥浆传输至地面,远程计算机系统将泥浆脉冲进行解析后反馈给轨迹控制人员,轨迹控制人员通过采用滑动钻进、复合钻进、调整工具面、选择钻具造斜率等手段进行钻井轨迹控制。
四、对接连通技术
与水平井对应直井所造的洞穴直径一般为0.5~0.6m,水平井要穿过该洞穴,仅靠常规的精度很高的定向井测量仪器,一般来说是不可能的。必须采用专用连通仪器,用定向井测量仪器和工具作为配合,根据获得的信号和指令,要求定向井工程师调整井眼轨迹,达到对接连通的目的(图6-10)。
DS01-1 井钻进参数:WOB 20~40kN;泵压8MPa。
(1)直井下入VECTOR仪器。
(2)水平井接收信号,判断与洞穴的相对位置。
(3)每3m测斜一次,根据定向井工程师的预测数据,连通工程师发出井斜、方位调整指令。
(4)定向井工程师依据指令,完成井斜和方位的调整。
(5)距洞穴3m,直井起出仪器。
(6)水平井旋转钻进连通,连通后钻进10m左右,起钻甩RMRS。
图6-10 DS01-1工程井与生产井连通示意图
五、排采技术
排采技术包括排采设备、排采制度和修井等方面的技术集成。
(一)排采设备
排采设备的选择主要取决于井深、井底压力、水的流速及气的流速等因素。本项目直井选择管式泵排采设备,工程井和生产井合一的水平井进行了专门的泵型试验。
井口装置包括:
(1)单井采气系统。主要包括油、套环空出口+套管压力表+支管线+火把。
(2)单井排液系统。主要包括油管出口+气、水分离器+水计量表+排水管线。
(3)自动数据采集和设备自动控制系统。主要包括探头、传输电缆。
CNG站的自动控制系统通过安装于井口的探头和传输电缆来采集各井的产水量和套管压力数据及控制抽油机和电机的运行。
(二)排采制度
排采工作制度根据产水量和降液速度进行调整。各井各不相同,同一口井在排采先后阶段需要适时调整。PHH-001、PHH-002、DS01-1V、DS02-1V井采用1.5~1.8m冲程,1.5~6.0次/min冲次,保证每日3~5m3的降液速率,满足该井排液,保持液面平稳。
(三)压力煤粉控制和管理
3号煤煤质较硬,排采过程中,可以随井液进入泵筒的只有悬浮的微粒,略大的井下物都沉积在井筒中,所以该类井在排采过程中,特别是排采初期,应当定期进行检泵,清除井筒内沉积物,保证后期产气的稳定。
15号煤煤质较软,初期排采强度过大,降液速度过快,使井底流压突然变化,会造成井眼坍塌。所以该类井必须控制好降液速度,防止过快造成井眼坍塌,堵塞产气通道。
(四)修井
排采期间由于产液含煤粉量大,井下有大量煤浆,运行时煤浆进入泵桶,部分随井液排出地面,另有部分留在井桶内,造成凡尔堵塞或柱塞卡死,或因电路故障停机造成卡泵,因此排采井要定期进行修井作业。
六、装备、工具
钻井设备的选择是钻井成功的关键,水平井施工要求钻机具备较大的提升能力和加压钻进能力。导向工具确保完成设计的井眼轨迹,提高煤层钻遇率。对接系统要求准确连通。
(一)钻机
1.ZJ30B钻机设备清单
ZJ30B钻机设备清单见表6-9。
2.T130XD顶驱车载钻机
PHH-001、PHH-002井钻井设备采用美国雪姆公司生产的T130XD顶驱车载钻机。该钻机主动力760马力,名义钻井深度1900m(311mm井径,114mm钻杆)。提升能力60t,顶驱给进能力14.5t,扭矩12kN·m,车载空压机2.4MPa,排量38m3/min。井台可伸起2.41m,可以直接安装防喷器。
表6-9 ZJ30B钻机设备清单
续表
固控及防喷系统未列出。
该钻机搬迁安装极为方便,提升、回转能力均能满足煤层气水平井施工的需要。该钻机即可采用常规钻井方法施工,也可采用空气钻井工艺施工。特别是该钻机加尺时用时很短,一般不超过1min,有效地减少了钻井时因停泵造成的井下复杂,使用钻井设备见表6-10。
表6-10 钻井设备配备表
(二)81/2″井眼井下特殊设备
81/2″井眼井下特殊设备见表6-11。
表6-11 81/2″井眼井下特殊设备清单
(三)6″井眼井下特殊设备
6″井眼井下特殊设备见表6-12。
表6-12 6″井眼井下特殊设备列表
七、钻井液和储层保护技术
(一)钻井液性能要求
钻井液性能要求见表6-6。
(二)钻井液性能维护
(1)开钻前检查固控设备、配浆及循环系统是否符合要求,各开关闸门是否灵活。
(2)清泥浆罐,配浆。坂土浆需预水化24h以上。
(3)钻进时开除砂器。一开结束,充分循环洗井。起钻前适当提高泥浆黏切,确保表层套管顺利下入。
(4)二开用好各种固控设备,保证钻井液具有低的固相含量。
(5)造斜段确保井眼清洁;可以不定期使用稠泥浆段塞清洗井眼。
(6)造斜后应全面实施减阻防卡措施。
(7)通井钻具到底后,充分循环洗净,起钻前打入3方稠塞。
(8)下套管前裸眼段注入防卡减阻液,确保套管顺利下入;下套管完循环洗井时适当降低泥浆黏切,以提高水泥浆顶替效率。
(9)水平段在煤层中钻进,以清水为介质,加强固控、除气。观察返出岩屑情况,可打入生物聚合物XC,提高井底的净化效果。
(10)钻进用好振动筛和除砂器,清除煤粉。
(11)为了确实保护好煤层,严格按照设计,采用清水钻进,用XC液体清洁井眼时高黏返出时放掉,泥浆罐内钻井液超过30s,放掉换清水。
本井在使用清水+生物聚合物钻煤层时可能存在风险,特制定两套预案,但未实施。
(三)煤层保护技术
煤层气井施工时,煤储层保护极为关键。在本次钻井中,主要采用清水钻井液钻进,严格控制钻井液固相含量、密度,井内岩粉较多时,通过泵入高黏无污染钻井液排出岩粉,既保证了井内安全,又防止了储层污染。
15号煤采用清水作为循环冲冼液钻进,为减少对储层污染,施工中严格控制清洗液的密度和固相含量,相对密度不超过1.03,由于煤层钻速很快,煤屑多,钻进一段时间需往井内泵入一定量的高黏无污染清洁液排出煤粉,保证井下既安全钻进又不污染煤层。完井起钻前采用清水清孔,替换孔内钻井液,保持孔内清洁干净,确保出气通道畅通。三开水平井钻井过程中,为避免和减少冲洗液中固相颗粒对煤层的污染,煤层水平井段使用吸水的钻进。但是由于清水的携带能力低,特别是水平井段不可避免地会造成煤屑、岩屑床,因此在钻进过程中,遇到井内复时,及时使用XC配制的清扫液进行清理,保持了井底干净,有效地避免了埋卡钻,确保了钻进安全,为本井的胜利完井打下了坚实的基础。
㈡ 如何解决水平定向钻在施工中出现的问题及关键技术
1、 水平定向钻穿越施工工艺:
使用水平定向钻机进行管线穿越施工,一般分为二个阶段:第一阶段是按照设计曲线尽可能准确的钻一个导向孔;第二阶段是将导向孔进行扩孔,并将产品管线(一般为PE管道,光缆套管,钢管)沿着扩大了的导向孔回拖到导向孔中,完成管线穿越工作.
1.1 钻导向孔:
要根据穿越的地质情况,选择合适的钻头和导向板或地下泥浆马达,开动泥浆泵对准入土点进行钻进,钻头在钻机的推力作用下由钻机驱动旋转(或使用泥浆马达带
动钻头旋转)切削地层,不断前进,每钻完一根钻杆要测量一次钻头的实际位置,以便及时调整钻头的钻进方向,保证所完成的导向孔曲线符合设计要求,如此反
复,直到钻头在预定位置出土,完成整个导向孔的钻孔作业.见示意图一:钻导向孔.
钻机被安装在入土点一侧,从入土点开始,沿着设计好的线路,钻一条从入土点到出土点的曲线,作为预扩孔和回拖管线的引导曲线.
1.2 预扩孔和回拖产品管线:
一般情况下,使用小型钻机时,直经大于200毫米时,就要进行予扩孔,使用大型钻机时,当产品管线直径大于Dn350mm时,就需进行预扩孔,预扩孔的直径和次数,视具体的钻机型号和地质情况而定.
回拖产品管线时,先将扩孔工具和管线连接好,然后,开始回拖作业,并由钻机转盘带动钻杆旋转后退,进行扩孔回拖,产品管线在回拖过程中是不旋转的,由于扩
好的孔中充满泥浆,所以产品管线在扩好的孔中是处于悬浮状态,管壁四周与孔洞之间由泥浆润滑,这样即减少了回拖阻力,又保护了管线防腐层,经过钻机多次预
扩孔,最终成孔直径一般比管子直径大200mm,所以不会损伤防腐层.见示意图二:预扩孔和示意图三:回拖管线.
在钻导向孔阶段,钻出的孔往往小于回拖管线的直径,为了使钻出的孔径达到回拖管线直径的1.3~1.5倍,需要用扩孔器从出土点开始向入土点将导向孔扩大至要求的直径.
地下孔经过预扩孔,达到了回拖要求之后,将钻杆、扩孔器、回拖活节和被安装管线依次连接好,从出土点开始,一边扩孔一边将管线回拖至入土点为止.
2、 水平定向钻施工的特点:
2.1 定向钻穿越施工具有不会阻碍交通,不会破坏绿地,植被,不会影响商店,医院,学校和居民的正常生活和工作秩序,解决了传统开挖施工对居民生活的干扰,对交通,环境,周边建筑物基础的破坏和不良影响.
2.2 现代化的穿越设备的穿越精度高,易于调整敷设方向和埋深,管线弧形敷设距离长,完全可以满足设计要求埋深,并且可以使管线绕过地下的障碍物.
2.3 城市管网埋深一般达到三米以下,穿越河流时,一般埋深在河床下 9—18米,所以采用水平定向钻机穿越,对周围环境没有影响,不破坏地貌和环境,适应环保的各项要求.
2.4 采用水平定向钻机穿越施工时,没有水上、水下作业,不影响江河通航,不损坏江河两侧堤坝及河床结构,施工不受季节限制,具有施工周期短人员少、成功率高施工安全可靠等特点.
2.5 与其它施工方法比较,进出场地速度快,施工场地可以灵活调整,尤其在城市施工时可以充分显示出其优越性,并且施工占地少工程造价低, 施工速度快.
2.6 大型河流穿越时,由于管线埋在地层以下 9—18mm,地层内部的氧及其他腐蚀性物质很少,所以起到自然防腐和保温的功用,可以保证管线运行时间更长.
3、 水平定向钻机系统简介:
各种规格的水平定向钻机都是由钻机系统、动力系统、控向系统、泥浆系统、钻具及附助机具组成,它们的结构及功能介绍如下:
3.1 钻机系统:是穿越设备钻进作业及回拖作业的主体,它由钻机主机、转盘等组成,钻机主机放置在钻机架上,用以完成钻进作业和回拖作业.转盘装在钻机主机前端,连接钻杆,并通过改变转盘转向和输出转速及扭矩大小,达到不同作业状态的要求.
3.2 动力系统:由液压动力源和发电机组成动力源是为钻机系统提供高压液压油作为钻机的动力,发电机为配套的电气设备及施工现场照明提供电力.
3.3 控向系统:控向系统是通过计算机监测和控制钻头在地下的具体位置和其它参数,引导钻头正确钻进的方向性工具,由于有该系统的控制,钻头才能按设计曲线钻进,现经常采用的有手提无线式和有线式两种形式的控向系统.
3.4 泥浆系统:泥浆系统由泥浆混合搅拌罐和泥浆泵及泥浆管路组成,为钻机系统提供适合钻进工况的泥浆.
3.5 钻具及辅助机具:是钻机钻进中钻孔和扩孔时所使用的各种机具.钻具主要有适合各种地质的钻杆,钻头、泥浆马达、扩孔器,切割刀等机具.辅助机具包括卡环、旋转活接头和各种管径的拖拉头.
穿越施工现场布置图
1. 入土点是定向钻施工的主要场所,钻机就布置在该侧,所以施工占地比较大,DD330钻机的最小占地为30×30M,当然也可以根据现场的实际情况作相应调整,DD60、DD-5的占地相应要小得多.
2.出土点一侧主要作为管道焊接场地,在出土点应有一块20×20M的场地作为预扩孔、回拖时接钻杆和安装其他设备时使用;在出土点之后有一条长度与穿越长度相等的管线焊接作业带.
穿越实例
大沽沙穿越钻机场地布置
1998年9月到10月之间,在天津塘沽大沽沙海河,我公司仅用45天时间完成了两条Φ219×8,一条Φ426×9,长度为960米的管道穿越.
大沽沙穿越焊接场地(只显示了两条管道)
水平定向钻穿越施工工艺流程图
使用水平定向钻技术穿越河流和其它障碍物的施工方法在世界范围内得到了广泛的运用.水平定向钻穿越承包商协会认为:在工程项目招投标过程中,水平定向钻承
包商应设法获取尽可能多的相关信息以提出完整并具竞争力的报价,承包商在开工前应该获得以下信息,以保证日后的工作可以顺利进行,并在此条件下完成工程项
目的施工,同时足够的施工前的各类信息还可以保证施工过程更安全,减少对周围环境的破坏,使工程进行的更顺利.
一、概 述
A、发展与使用
水平定向钻技术最早出现在70年代,是传统的公路打孔和油田定向钻井技术的结合,这已成为目前广受欢迎的施工方法,可用于输送石油、天然气、石化产品、
水、污水等物质和电力、光缆各类管道的施工.不仅应用于河流和水道的穿越,同时还广泛应用于高速公路、铁路、机场、海岸、岛屿以及密布建筑物、管道密集区
等.
B、技术限制
定向钻施工技术首先应用于美国海岸地区的冲积层穿越,现在已经能够开始在粗沙、卵石、冰碛和岩石地区等复杂地质条件下进行穿越施工.最长的穿越施工已达6000英尺、管道直径为18英寸.
C、优势
事实证明:水平定向钻穿越是对环境影响最小的施工方法.这项技术同时还可以为管道提供最的保护层,并相应减少了维护费用,同时不会影响河流运输并缩短施工期,证明是目前效率最高,成本最低的穿越施工方法.
D、施工过程和技术
1、导向孔:导向孔是在水平方向按预定角度并沿预定截面钻进的孔,包括一段直斜线和一段大半径弧线.在钻导向孔的同时,承包商也许会选择并使用更大口径的
钻杆(即冲洗管)来屏蔽导向钻杆.冲洗管可以起到类似导管的作用,还可以方便导向钻杆的抽回和更换钻头等工作.导向孔的方向控制由位于钻头后端的钻杆内的
控制器(称为弯外壳)完成.钻进过程中钻杆是不做旋转的,需要变换方向时若将弯外壳向右定位,钻进路线即向右沿平滑曲线前进.钻孔曲线由放置在钻头后端钻
杆内的电子测向仪进行测量并将测量结果传导到地面的接收仪,这些数据经过处理和计算后,以数字的形式显示在显示屏上,该电子装置主要用来监测钻杆与地球磁
场的关系和倾角(钻头在地下的三维坐标),将测量到的数据与设计的数据进行对比,以便确定钻头的实际位置与设计位置的偏差,并将偏差值控制在允许的范围之
内,如此循环直到钻头按照预定的导向孔曲线在预定位置出土.
2、预扩孔:
导向孔完成后,要将该钻孔进行扩大到合适的直径以方便安装成品管道,此过程称为预扩孔,(依最终成孔尺寸决定扩孔次数).例如,如需安装36英寸管线,钻
孔必须扩大到48英寸或更大.通常,在钻机对岸将扩孔器连接到钻杆上,然后由钻机旋转回拖入导向孔,将导向孔扩大,同时要将大量的泥浆泵入钻孔,以保证钻
孔的完整性和不塌方,并将切削下的岩屑带回到地面.
3、回拖管道:预扩孔完成以后,成品管道即可拖入钻孔.管道预制应在钻机对面的一侧完成.扩孔器一端接上钻杆另一端通过旋转接头接到成品管道上.旋转接头
可以避免成品管道跟着扩孔器旋转,以保证将其顺利拖入钻孔.回拖由钻机完成,这一过程同样需要大量泥浆配合,回拖过程要连续进行直到扩孔器和成品管道自钻
机一侧破土而出.
二、现场布局和设计
A、道 路
施工现场两侧都需要重型设备,为缩减成本,通往两侧施工现场的道路应尽可能利用现有道路以减少新修道路距离,或利用管道线路的施工便道,所有相关道路使用权的协议都应由业主提供,在投标阶段再来讨论这些问题为时已晚.
B、工作场地
1、钻机一侧——钻机施工场地至少需要30M(100FT)宽,长45M(150FT)的面积.该面积从入土点算起,入土点应位于规定的区域内至少
3M(10FT)处,同时由于许多钻机配套的设备或配件没有规定的存放地点,所以钻机一侧施工现场可由许多不规则的小块组成,以便节省占地面积,现场尽量
要平整,坚硬,清洁,以便有利于进行施工.由于穿越施工时需要大量的淡水供搅拌泥浆用,所以施工现场要尽量靠近水源或便于连接自来水管道的地方.
2、管道一侧----为便于预制成品管道,管道一侧要有足够长度的施工现场,这也是要重点考虑的事情.现场宽度应满足管道施工的需要(一般为
12----18米).同样在出土点一侧也需要30米(100FT)宽乘以45米(150FT)长的施工现场.总长度以能够摆放下所预制的管道为准,(场
地的总长度一般为穿越管道长度再加上30米,)在回拖前,要将管道预制完成,包括焊接,通球,试压防腐等工序,在回拖过程中,不能再进行管道的连接工作,
因为回拖过程是要连续进行的,若此时进行管道连接将可能造成地下孔洞的塌方,极可能造成整个工程施工的失败.
C、施工现场勘察
一旦施工地点确定,应对相应区域进行勘测并绘制详细准确的地质地貌图纸.最终施工的精度取决于这一勘测结果的精度.
D、施工设计参数
1、覆盖层厚度----考虑的因素包括所穿越河流的流量特征,季节性洪水冲刷深度,未来河道的加宽和加深,现有管道和电缆的位置等因素.一旦确定了施工地
点并完成地质调查,穿越层的厚度也就确定了,一般来说,覆盖层应至少是6米(20FT)厚.以上仅是针对河流穿越而言的,对于其它障碍物的穿越会有另外的
要求.
2、钻进角和曲率半径----在大多数穿越施工中,入土角通常选择在8--12度之间,多数施工应首先钻一段斜直线,然后再钻一段大半径曲线.此曲线的曲
率半径由成品管线的弯曲特性决定,随直径增大而增大,钢管道曲率半径的拇指法则是100FT/IN(一般取管道直径的1000—1200倍).斜直线将导
向孔曲线按照预定的走向引导到设计的深度,然后是一段在此深度上的长长的水平直线,然后到达向上的弯曲点再到出土点.出土角应控制在5-12度之间,以便
于成品管道的回拖.
E、钻孔施工
所有的测向控向工具都包括地下测量电子设备和地面接收设备,可以测得钻头所在位置的磁方位角(用于左/右控制)和倾斜角(上/下控制)以及钻头的钻进方向.
1、精度:穿越施工精度很大程度上取决于磁场的变化.例如,大型钢结构(桥梁,桩基,其它管道)和电力线路会影响磁场读数.而穿越出土点的导向孔目标偏差值应控制在左右3米(10FT),长度——3米~10米(-10~30FT)的范围内.
2、完工图纸:一般来说,导向孔的测量和控制应在钻导向孔时每钻进一根钻杆或隔9米(30FT)测量计算一次.以上测量计算完成的导向孔施工图纸承包商应向业主提供.也有采用替代方法如陀螺仪,穿地雷达和智能清管球用来做定位工作.
三、地质调查
A、探孔数量
探孔数量取决于计划穿越地点的地层情况及穿越长度.如果穿越长度为300米(1000FT),在两侧的穿越工地各钻一个钻孔就足够了,如果钻孔结果表明该
地区地质状况比较单一,就不必进行进一步的钻探取样.如果勘探报告表明该地区地质条件比较复杂,或者发现有岩石或有粗沙层存在,这时就需要做进一步的详细
的地质调查.长距离大口径穿越施工时,如出现粗砂,卵石,风化岩或硬岩应每隔180米----240米(600--800FT)取样一次,若有明显迹象表
明地质结构异常复杂,这时就需要打更多的地质探孔进行更多的采样工作.所有采样探孔都应沿穿越断面方向,采样深度以计划的穿越深度为准.如有可能,取样探
孔最好选在穿越中线一侧约8米(25FT)处.勘探任务完成后,探孔必须封好以防止在施工过程中的泥浆泄漏.
B、探孔深度
所有的探孔深度都应至少达到穿越点以下12米(40FT)或预定的穿越深度以下6米(20FT),两者之中取其大者.有时将穿越深度定的深一些或实际穿越
曲线比设计的位置深一些,无论对承包商还是对业主来说都是很有益的,关键是穿越位置要选在地层结构一致的利于成孔的地层中进行,这样才利于穿越的成功.
C、土壤的标准分类
一名合格的地质技师或地质学者,应能依据统一土壤分类系统或ASTM设计书D-2487和D2488对材料进行分类.能够拥有一份由现场技师或钻探公司提
供的现场钻探记录,对以后的施工将是非常有益的,此记录会包括对材料的目测分类以及由钻探公司根据取样结果对地层结构所做的解释和评价.
D、标准穿刺测试
SPT为了更好地确定颗粒材料的密度,地质工程师通常会依据ASTM规范D1586做标准穿刺测试SPT.这是一种现场测试方法,利用标准重量的重锤将勺
形取样器打入土层中的一定深度,记录下进入到12寸深时的击打次数.所获数据即为标准穿刺阻力值并可用于估算试验地点非聚合土壤的相对密度.也有些钻探公
司会选择在结合性土壤或岩石地区进行小范围的这项试验,以此来确认密实土壤的一致性及岩石的硬度.
E、取芯取样法
多数地质勘探公司更喜欢使用取芯取样器来获取地下岩心的样本,这些测试一般根据ASTM规范D-1587进行.除取样器为液压驱动的有锋利切割刃的薄壁无
逢钢筒外,此类测试类似上述标准穿刺测试.需要的液压数值可在现场记录中找到,这种方法可取到相对完整的样本以便对其进行更详细的试验室分析.样本可在现
场利用手持式穿刺仪分析,对于定向穿越来说,通常使用上述切割式勺状取样器即可满足施工需要.
F、颗粒度分析
将样品进行颗粒度筛网分析,是对于用切割式勺状取样器在施工现场取得的颗粒状物质所进行的一种机械试验,这些样品被送到试验室,在通过一系列的筛网后,根据其颗粒的大小和重量得出不同粒径的百分比,这是最重要的试验之一.
G、岩石情况
如果在土壤勘测中发现岩层的存在,必须确定岩层类型,相对硬度和非限定性压缩强度,要由专业勘探公司利用金刚石钻头取芯桶进行取样,典型的岩心样本直径为
50毫米(2英寸).岩石类型由地质专家根据岩心与总取心长度关系对岩石进行质量分类,岩石硬度依据岩石与以知硬度的十种材料相比较得知,压缩强度通过精
确测量岩心然后进行压缩实验取得.这些数据属于岩石的物理参数,以便于确定采用什么类型的穿越设备和钻头,并且穿越进尺也可以估计到.
穿越公司网上可以搜.我现在在做一个大项目,有很多穿越,不知道你具体是做什么的,有兴趣的话,大家互相讨论学习.
㈢ compass怎么输入设计
方法如下。
compass怎么输入设计搜索_
COMPASS软件操作基础手册
COMPASS软件含有3个关键功效:
●设计用以设计井身轨道
●测量用以计算所钻井井眼位置参数
●防碰用以计算和参考井之间距离
除此之外还有以下功效:
●企业设置能够针对不一样企业对COMPASS进行系统参数配置
●油田设置用认为一组区块定义统一和垂直参考系统参数
●靶点编辑器定义靶点位置和形状
●样板编辑器井口坐标计算器
●参考数据海拔用以定义不通垂直数据
●地磁计算器能够用不一样地磁模型计算磁场参数
●测地计算器为不一样坐标系统进行转换
●测量工具联合多个不一样测量工具定义误差
●测量历史选择哪一组测量参数作为确定井身轨迹
其中参数英文对照以下:
MD
测量深度
Company
企业
Inc
井斜
Field
油田
Az
方位
Site
区块
TVD
垂深
Well
井号
N/S
南北坐标
Wellpath
井身轨道
E/W
东西坐标
Plan
设计
V.sec
投影位移
Survey
测量
Dleg
狗腿度(全角改变率)
Antcollision
防碰
Toolface
工具面角
Utilities
功效设置
Build
造斜率
RadiusofCurvature
曲率半径法
Turn
扭方位率
Targets
靶点
使用步骤:
1)安装,注意安装完成根据说明进行破解。而且不能安装在汉字目录名内,而且英文字符不能超出8位。
2)安装完成运行首优异行单位设置,推荐使用国际单位SI标准,方法是点击Utilities菜单,选择units再调入预设SI单位集合即可,注意此时狗腿度单位是度/30m,能够依据个人习惯进行调整。
3)第一次使用首先建立一个新企业(company)如二勘、六勘等等,注意在company对话框内一定要选择中国钻井行业要求标准-曲率半径法(RadiusofCurvature),而且依据需要选择坐标原点(Co-ordinate)是区块(site)中心还是井口(slot)中心。假如不包含防碰,不需要比较两井相当位置时,提议选择井口中心作为原点。
@书不厌读
4)建立一个油田(field)如胜利、大庆、塔指等等。
5)建立一个区块(site)如哈得、塔河等等。能够输入本区块中心坐标(假如愿意)。
6)建立一口井(well),名字用井号如:轮古37等等,并输入本井井口坐标。
7)建一个轨道(wellpath),一口井能够建立数个轨道。并能够指定其中一个为确定(definitive)轨道。
8)选择EDIT(编辑)-Wellpath(轨道)-targets(靶点)菜单(或直接点工具栏按钮),进入靶点设计,输入靶点名字、垂深、坐标、形状,保留退出。
9)选择Planning-newplan菜单,输入轨道设计名字和起始点,进行轨道设计。
10)选择Survey-newsurvey菜单,输入测量过程名字和起始点,进行实际测量参数计算。
11)实际使用过程中,每进行一次测量全部要反复9过程建立一个以最终测量点为起点新设计,随时调整下一步定向方法。
靶点设计模块使用方法:
输入靶点名字如:A、B等等,输入垂深和坐标并选择靶点形状;
定向井通常为圆形,复选Circle(圆形)后,再点击EditShape按钮进入具体设置对话框,通常选择半径即可。
水平井靶核横截面形状通常为方形和梯形,设计时依据情况分别复选Rectangle(方形)或Polygon(多边形),然后再点击EditShape按钮进入具体设置对话框进行具体设置。
选择方形时具体设置对话框内还应输入靶核截面长和宽,和该截面中心相对坐标、旋转角度(即靶点方位角),和上下厚度和水平倾角。
复选选定多边行时,进入具体设置对话框设置内容较为复杂,首先要以目前靶点为坐标原点,把靶横核截面个顶点坐标,输入到左侧栏里,然后输入上下厚度、旋转角度(即靶点方位角)和水平倾角,然后点击ok按钮结束。
设计模块使用方法:
增加一个曲线类型
1、单击代表一个曲线类型按钮,打开一个下拉窗口。曲线类型在下面有具体介绍。
2、在输入栏里参数。
3、点击_进行计算,得出结果。
4、点击_接收计算结果,把曲线加入到设计中中,并关闭下拉窗口。
@书不厌读
假如取消计算结果,并并关闭下拉窗口,则点击_。
假如不想关闭窗口,反复下一段设计,则点击_。
曲线类型具体说明:
_斜井2维设计
它是朝向瞄准目标或选择靶点设计首选类型。
一口斜井含有三个部分,稳-增-稳,整个曲线能够由4个参数来确定。
输入两个你所确定参数,然后在你不确定参数旁边点击复选框,按_进行计算。
点击_可输入未知参数取值范围,并能够选择你所需要某个值进行计算。
注意:计算按钮将保持灰色不可用状态,直到两个不确定参数被选中。
1stHoldLength(第一稳斜段长度):开始造斜以前稳斜段长度。
BuildRate(造斜率):造斜率。
MaximumAngleHeld:设计要达成井斜角。
2ndHoldLength(第二稳斜段长度):最终稳斜段长度。
_“S”形2维井身设计
它是朝向瞄准目标或选择靶点设计首选类型。
“S”形2维井身含有5个部分,稳-增-稳-增(降)-稳,整个曲线能够由7个参数来确定。
输入5个你所确定参数,然后在你并不确定,期望由COMPASSS来计算两个参数旁边点击复选框,按_进行计算。
点击_可输入未知参数取值范围,并能够选择你所需要某个值进行计算。
1stHoldLength(第1稳斜段长度):初始稳斜段长度。
1stBuildRate(造斜率):第一增斜段造斜率。
MaximumAngleHeld:设计要达成井斜角。
2ndHoldLength:(第2稳斜段长度):第二稳斜段长度。
2ndBuildRate:第2造(降)斜段造(降)斜率。
FinalInclination:最终设计要达成井斜。
Finalholdlength:由最终造斜段至靶点稳斜段长度。
_变斜、调方位曲线段:
这个部分提供了8种不一样变斜、调方位曲线类型。
变斜、调方位曲线数学模型假设井眼井眼轨道是沿圆柱体表面螺旋线,轨道形状被分解为两个面,即竖直面(井斜)和水平面(方向),Build(造斜率)是竖直面上井斜角改变率,Turn(变方位率)是水平面上方向角改变率。
@书不厌读
_变斜、调方位到设计斜深-应用给定造斜率和变方位率到指定斜深。
_变斜、调方位到设计垂深-应用给定造斜率和变方位率到指定垂深。
_变斜、调方位到设计井斜-应用给定造斜率和变方位率到指定井斜。
_变斜、调方位到设计方位-应用给定造斜率和变方位率到指定方位。
_切线抵达指定目标点
输入造斜率和变方位率COMPASS将增加3个部分,首先应用给定造斜率和变方位率到指定正确方向或井斜之一,而不管先抵达那一个,第二部分则继续完成井斜或方位中另一个,即假如先指向了正确井斜,则会继续改变到正确方位,反之假如先指向了正确方位,则会继续改变到正确井斜。此时,轨道指向了正确目标,所以第三部分将稳斜到目标。
㈣ 关于钻井测井中的狗腿度是什么意思
狗腿度-专业术语是井身全角变化率(狗腿度):overall angle change rate
SY/T 5313-93《钻井工程术语》标准10.43条款中,对狗腿度定义为单位井段长度井眼轴线在三维空间的角度变化”,而单位井段长度取决于生产实际中测斜需要。它既包含了井斜角的变化又包含着方位角的变化。常用“°/100m”表示。 狗腿度引起的管杆弯曲,降低了钻杆的自由度,将发生应力的集中释放,使固定阀在下冲程中有开启过程,造成漏失,降低了泵效。 井的狗腿度过大会引起钻柱与井壁严重摩擦,金属在摩擦过程中消耗很多能量,而且增加钻井和采油作业的困难,易导致井下事故。
㈤ 井斜角的计算方式
井斜计算
最新国内外石油勘探开采技术标准大全
第一节 定向井井身参数和测斜计算
一.定向井的剖面类型及其应用
定向钻井就是“使井眼按预定方向偏斜,钻达地下预定目标的一门科学技术”。定向钻井的应用范围很广,可归纳如图9-l所示。
定向井的剖面类型共有十多种,但是,大多数常规定向井的剖面是三种基本剖面类型,见图9-2,称为“J”型、“S”型和连续增斜型。按井斜角的大小范围定向井又可分为:
常规定向井井斜角<55°
大斜度井井斜角55~85°
水平井井斜角>85°(有水平延伸段)
二.定向井井身参数
实际钻井的定向井井眼轴线是一条空间曲线。钻进一定的井段后,要进行测斜,被测的点叫测点。两个测点之间的距离称为测段长度。每个测点的基本参数有三项:井斜角、方位角和井深,这三项称为井身基本参数,也叫井身三要素。
1.测量井深:指井口至测点间的井眼实际长度。
2.井斜角:测点处的井眼方向线与重力线之间的夹角。
3.方位角:以正北方向线为始边,顺时针旋转至方位线所转过的角度,该方向线是指在水平面上,方位角可在0—360°之间变化。
目前,广泛使用的各种磁力测斜仪测得的方位值是以地球磁北方位线为准的,称为磁方位角。磁北方向线与正北方向线之间有一个夹角,称磁偏角,磁偏角有东、西之分,称为东或西磁偏角,真方位的计算式如下:
真方位=磁方位角十东磁偏角
或 真方位=磁方位角一西磁偏角
公式可概括为“东加西减”四个字。
方位角也有以象限表示的,以南(S)北(N)方向向东(E)西(W)方向的偏斜表示,如N10°E,S20°W。在进行磁方位校正时,必须注意磁偏角在各个象限里是“加上”还是“减去”,如图 9-3所示。
4.造斜点:从垂直井段开始倾斜的起点。
5.垂直井深:通过井眼轨迹上某点的水平面到井口的距离。
6.闭合距和闭合方位
(l)闭合距:指水平投影面上测点到井口的距离,通常指靶点或井底的位移,而其他测点的闭合距离可称为水平位移。
(2)闭合方位:指水平投影响图上,从正北方向顺时针转至测点与井口连线之间的夹角。
7.井斜变化率和方位变化率:井斜变化率是指单位长度内的井斜角度变化情况,方位变化率是指单位长度内的方位角变化情况,均以度/100米来表示(也可使用度/30米或度/100英尺等)。
8.方位提前角(或导角):预计造斜时方位线与靶点方向线之间的夹角。
三.狗腿严重度
狗腿严重是用来测量井眼弯曲程度或变化快慢的参数(以度/100英尺表示)。可用解析法、图解法、查表法、尺算法等来计算狗腿严重度k。
1.第一套公式
2.第二套公式
cosγ=cosa1cosa2+sina1sina2 cosΔj………………………………………(9-3)
本式是由鲁宾斯基推导出来的,使用非常普遍。美国人按上式计算出不同的a1、a2和Δj值下的狗腿角γ值,并列成表格,形成了查表法。
3.第三套公式
γ——两测点间的狗腿角。
若将三套公式作比较,第一套公式具有普遍性,适合于多种形状的井眼,第二套只适用于平面曲线的井眼(即二维井型),第三套是近似公式,用于井斜和方位变化较小的情况。
四.测斜计算的主要方法
测斜计算的方法可分为两大类二十多种。一类是把井眼轴线视为由很多直线段组成,另一类则视其为不同曲率半径的圆弧组成。计算方法多种多样,测段形状不可确定。主要的计算方法有正切法、平衡正切法、平均角法、曲率半径法、最小曲率法、弦步法和麦库立法。从计算精度来讲,最高的是曲率半径法和最小曲率法,其次是平均角法。以下各图和计算公式中下角符号1、2分别代表上测和下测点。
1.平均角法(角平均法)
此法认为两测点间的测段为一条直线,该直线的方向为上下两测点处井眼方向的矢量和方向。
测段计算公式:
2.平衡正切法
此法假定二测点间的井段为两段各等于测段长度一半的直线构成的折线,它们的方向分别与上、下两测点处的井眼方向一致。
如图9-6,计算式为:
3.曲率半径法(圆柱螺线法)
此法假设两测点间的测段是条等变螺旋角的圆柱螺线,螺线在两端点处与上、下二测点处的井眼方向相切。
如图9-7,测段的计算公式有三种表达形式。
(1)第一种表达形式
(9-13)~(9-16)式中:
这四个公式是最常用的计算公式:
(3)第三种表达形式
(4)曲率半径法的特殊情况处理
③第三种特殊情况,α1≠α2,且其中之一等于零。此时,按二测点方位角相等来处理,然后代入第二种特殊情况的计算式中。
4.最小曲率法
最小曲率法假设两测点间的井段是一段平面的圆弧,圆弧在两端点处与上下二测点处的井眼方向线相切。测段计算如图9-8。
测段计算公式如下:
令fM=(2/γ)×tg(γ/2),fM是个大于1但很接近1的值。在狗腿角γ足够小的情况下,可近似认为fM=1,这时上述四个计算公式就完全变成平衡正切法的公式了,它是对平衡正切法公式的校正。
ΔS′是切线1M和M2在水平面上的投影之和,即ΔS′=1′M′+ M′2′。ΔS′并不是测段的水平投影长度ΔS。要作出井身垂直剖面图,需要求出ΔS,而最小曲率法却求不出ΔS,这是最小曲率法的缺点。为了作出垂直剖面图,可用下式近似地求出ΔS′:
……………………………………………………(9-39)
第二节 定向井剖面设计
在开钻前认真进行设计,可以大大节约定向钻井的成本。影响井眼轨迹的因素很多,其中一些因素很难进行估算(如在某些地层中的方位漂移情况等)。因此,在同一地区得到的钻井经验很重要,这些经验可以在其他井设计过程中起重要的参考作用。
一.设计资料
要进行一口定向井的轨道设计工作,作业者至少应提供靶点的垂深、水平位移和方位角,或提供井口与靶点的座标位置,通过座标换算,计算出方位角和水平位移。此外,定向井工程师还要收集下列资料:
1.作业区域和地理位置。通过作业区域,通常可以找到该地区已完井的钻井作业资料(野猫井除外),并对地层情况、方位漂移有一定的了解,根据地理位置,可以计算或查得到地磁偏角。
2.地质设计书和井身结构。了解有关地层压力、地温梯度、地层倾角、走向、岩性、断层,可能遇到的复杂情况,以及油藏工程师的特殊要求等。
3.作业者对造斜点、造斜率、增(降)斜率的要求,以及安全圆柱、最大井斜等井身质量的要求。
4.了解钻井承包商的情况,如泥浆泵性能,井下钻具组合各组件的基本情况等。
二.设计原则
1.能实现钻定向井的目的
定向井设计首先要保证实现钻井目的,这是定向井设计的基本原则。设计人员应根据不同的钻探目的对设计井的井身剖面类型、井身结构、钻井液类型、完井方法等进行合理设计,以利于安全、优质、快速钻井。
如救险井的钻井目的是制服井喷和灭火,保护油、气资源。因此,救险井的设计应充分体现其目的:一是靶点的层位选择合理。二是靶区半径小(小于10米),中靶要求高;三是尽可能选择简单的剖面类型,以减小井眼轨迹控制和施工难度,加快钻井速度。四是井身结构、井控措施等应满足要求。
2.尽可能利用方位的自然漂移规律在使用牙轮钻头钻进时,方位角的变化往往有向右增加的趋势,称为右手漂移规律。如图9-9所示,靶点为T,设计方位角为j′。若按j′定向钻进,则会钻达T′点,只有按照j角方向钻进,才会钻达目标点T。Δj角称为提前角,提前角的大小,要根据地区的实钻资料,统计出方位漂移率来确定,我国海上开发井一般取2~7度。
目前流行的PDC钻头(如RC426型等),对方位右漂具有较好的抑制效果。在地
层倾角小、岩性稳定时,PDC钻头具有方位左漂的趋势,这主要是由于PDC钻头的切削方式造成的。因此,要使用PDC钻头钻进的定向井,提前角要适当地小一点。
3.根据油田的构造特征,有利于提高油气产量,提高投资效益。
4.有利于安全、优质和快速钻井,满足采油和修井的作业要求。
三.剖面设计中应考虑的问题
1.选择合适的井眼曲率
井眼曲率不宜过小,这是因为井眼曲率限制太小会增加动力钻具造斜井段、扭方位井段和增(降)斜井段的井眼长度,从而增大了井眼轨迹控制的工作量,影响钻井速度。
井眼曲率也不宜过大,否则钻具偏磨严重、摩阻力增大和起下钻困难,也容易造成键槽卡钻,还会给其他作业(如电测、固井以及采油和修井等)造成困难。因此,在定向井中应控制井眼曲率的最大值,我国海上定向井一般取7~16°/100米,最大不超过20°/100米。不同的井段要选用不同的井眼曲率,具体如下:
井下动力钻具造斜的井眼曲率取:7~16°/100米。
转盘钻增斜的增斜率取:7~12°/100米。
转盘钻降斜的降斜率取:3~8°/100米。
井下动力钻具扭方位的井眼曲率取:7~14°/100米。
导向马达调方位或增斜的井眼曲率取:5~12°/100米。
说明:随着中曲率大斜度井和水平井的迅速发展,对普通定向井的井眼曲率(或狗腿严重度)的限制越来越少,API标准中已不再规定常规定向井的狗腿严重度。
为了保证起下钻顺利和套管安全,必须对设计剖面的井眼曲率进行校核,以限制最大井眼曲率的数值。井下动力钻具造斜和扭方位井段的井眼曲率Km应满足下式:
Dc――套管外径,厘米。
2.井眼尺寸
目前常规的定向井工具能满足152~445毫米(6~171/2英寸)井眼的定向钻井要求,一般地说,大尺寸井眼比较容易控制轨迹,但由于钻铤的尺寸也较大,形成弯曲所需的钻压较大,小井眼要使用更小、更柔的钻具,而且地层因素对轨迹的影响也较大。因此小井眼的轨迹控制更困难一些。
在常规的井眼尺寸中,大多数定向井可采用直井的套管程序。如果实钻井眼轨迹较光滑,没有较大的狗腿,那么即使在大井斜井段,也能较顺利地进行下套管作业。当然,在斜井段,应在套管上加扶正器以支撑套管,避免在下套管过程中发生压差卡钻,同时提高固井质量。另外,在大斜度井段,可根据井段长度和作业时间,决定是否使用厚壁套管。
3.钻井液设计:
(1)定向井钻井液设计十分重要,钻井液应有足够的携砂能力和润滑性,以减少卡钻的机会;
(2)钻井液性能控制对减少定向井钻柱拉伸与扭矩也很重要;
(3)钻井液中应加润滑剂,钻井液密度与粘度必须随时控制。
(4)如果用水基钻井液,那么在正常压力井段,应使用高排量和低固相含量的钻井液,这样有利于清洁井眼;
(5)水基钻井液应具有良好的润滑性能,以减少钻具摩阻和压差卡钻;然而在海上钻井,一定要避免污染问题。
(6)如果有异常高压井段要求钻井液密度达到1.45克/厘米3或更高,那么应考虑在钻开该高压地层前下一层保护套管,以封固所有正常压力井段。
4.造斜点的选择
造斜点的选择要适当浅些,但是在极浅的地层中造斜时,容易形成大井眼。同时,由于地层很软,造斜完成后下入稳斜钻具时,要特别小心,以免出现新井眼,尤其是在稳斜钻具刚度大或造斜率较高时。通常地说,浅层造斜比深层造斜容易一些,因为深层地层往往胶结良好,机械钻速低,需花费较长的造斜时间。
另外,造斜点通常选在前一层套管鞋以下30~50米处,以免损坏套管鞋,同时减少水泥掉块产生卡钻的可能性。
在深层地层造斜时,应尽量在大段砂层中造斜,因为砂层的井眼稳定,钻速较快,而页岩段较易受到冲蚀,钻速较低,而且在以后长时间钻井作业,容易在造斜段形成键槽而可能导致卡钻。
5.靶区形状和范围
靶区形状与范围通常由地质构造、产层位置决定,并考虑油田油井的分布情况,靶区大小是由作业者确定的。通常认为,鞍区范围不能定得太小,很小的靶区范围不仅会增加作业成本,同时也会增加调整方位的次数,造成井眼轨迹不平滑,增加转盘扭矩,同时也增加产生健槽卡钻的可能性。
通常,靶区形状为圆形(严格地讲,应该是球形)。浅井和水平位移小的定向井,其靶区范围小一些,一般靶区半径30~50米,而深井和水平位移大的井,靶区范围可以适当地大一些,一般靶区半径为50~70米。
6.造斜率和降斜率选择
常规定向井的造斜率为7~14°/100米,如果需要在浅层造斜并获得较大的水平位移,造斜率可提高到14~16°/100米。但是,浅层的高造斜率容易出现新井眼,也容易对套管产生较大的磨损。因此,浅层造斜通常选择较低的造斜率,而深层造斜(1000米~2000米)可选择较高的造斜率。
对于“S”型井眼,通常把降斜率选在3~8°/100米,如果降斜后仍然要钻较长的井段,则必须采用较小的降斜率平缓降斜,以避免键槽卡钻,同时,可降低钻进时的摩阻力。
7.最大井斜角
常规定向井的最大井斜角,一般在15~45°,如果井斜太小,则井眼的井斜和方位都较难控制。井斜大于60°时,钻具的摩阻力将大大增加。
8.允许的方位偏移与极限
(1)定向钻进时,初始造斜方向通常在设计方位的左边(即选定导角),然后通过自然漂移钻达靶区,井眼轨迹是一条空间曲线。
(2)但是对导角也有一个限制,在井眼密集的井网中,要求定向井轨迹保持在安全圆柱内,以避免与邻井相碰。
(3)同样,由于油藏特性和地质地层条件,也对导角的大小有一定的限制。
9.井身剖面类型
在满足设计和工艺要求的前提下,尽可能缩短井段长度,因为井段短则钻井时间短。在设计井身剖面形状时,要考虑井身结构,造斜点一般选在套管鞋以下30~50米处。目前,我国海上定向井的井身剖面通常由作业者决定,往往选择“J”型剖面。
四.剖面设计
1.设计步骤:
(l)选择剖面类型;
(2)确定增斜率和降斜率,选择造斜点;
(3)计算剖面上的未知参数,主要是最大井斜角;
(4)进行井身计算,包括各井段的井斜角、水平位移、垂深和斜深;
(5)绘制垂直剖面图和水平投影图。
井身剖面的设计方法有试算法、作图法、查图法和解析法四种。我国海洋定向井通常采用解析法,并使用计算机完成。剖面设计完成以后,应向作业者提供下列资料:
(1)总体定向钻井方案和技术措施。
(2)剖面设计结果,包括设计条件、计算结果、垂直剖面图和水平投影图。
(3)测斜仪器类型和该地区的磁偏角,以及测斜计算方法;
(4)设备和工具计划。
2.二维定向井设计(解析法)
解析法是根据给出的设计条件,应用解析公式计算出剖面上各井段的所有井身参数的井身设计方法。在使用计算机的条件下,还可同时给出设计井身的垂直投影图和水平投影图。
解析法进行井身剖面设计所用公式如下(用于三段制J型、五段制S型和连续增斜型剖面)。
(1)求最大井斜角αmax。
(2)各井段的井身参数计算:
①增斜段
②稳斜段
③降斜段
④稳斜段
⑤总井深L
(3)设计计算中特殊情况的处理
①当Ho2+So2-2RoSo=0时,表示该井段设有稳斜段,此时可由下面三个公式中任一个公式来求最大斜角αmax:
②当2Ro-So=0时,可用下式求最大井斜角αmax:
③当Ho2+So2-2RoSo<0,说明此种剖面不存在,此时应该改变设计条件,改变造斜点深度、增斜率和降斜率或改变目标点坐标。
井身剖面设计计算结果应整理列表,并校核井身长度和各井段井身参数是否符合设计要求,还应该校核井上曲率,井身剖面最大曲率应小于动力钻具和下井套管抗弯曲强度允许的最大曲率。
目前,应用计算机程序进行井身剖面设计时,设计结果列表和均可由打印机和绘图仪自动完成。
4.设计方法举例
例 某定向井设计全井垂深H=2-000米(靶点),上部地层300米至350米是流砂层,1000米至1050米有一高压水层,作出井身剖面设计。
井口座标 X1:3 246 535.0 Y1:2 054 875.0
井底座标 X2:3 245 972.95 Y2:2 054 665.0
先根据井口与井底座标,计算出水平位移和目标方位。
(1)根据提供的地质资料,在进行剖面设计时,应设法使动力钻具造斜的井段和增斜的井段避开流砂层和高压水层。
(2)对于钻井工艺及其它限制条件,在满足(l)项条件的前提下,应选择较简单的剖面类型。
(3)剖面类型选用“直一增一稳”三段制井身剖面。此种剖面简单,地面井口至目标点的井身长度短,有利于加快钻井速度。
(4)选择造斜点。根据垂直井深和水平位移的关系,造斜点应选在350米至600米间。如选在1050米以下,会使井斜角太大,是不合理的。
因300米至350米是流砂层,在井深结构设计时应用套管封固,以利于定向造斜,防止流砂层漏失、垮塌等复杂情况出现。造斜点应选在套管鞋以下不少于50米的地方为宜。因此,造斜点与井口之间井眼长度不应小于450米。
又因1000米至1050米是高压水层,为了下部井段能顺利钻进,也应考虑下入一层中间套管封住高压水层。为了减少井下复杂情况和有利于定向井井眼轨迹控制,在进行套管设计时,应避免套管鞋下在井眼曲率较大的井段中,中间套管的下入深度应进入稳斜井段150米左右为宜。在考虑上述因素后,造斜点的位置应在高压水层以上不少于400米处,也就是造斜点与井口之间的井眼长度不应大于600米。
经过上述的分析,如果造斜点应在450米至600米之间选择,那么,把造斜点确定在500米处是比较合理的。
(5)选择造斜率K为7°/100米。根据造斜率计算造斜井段的曲率半径R。
(6)计算最大井斜角αmax
R——造斜段曲率半径,米。
把已知条件代入上式得:
αmax=24.4°
(7)分段井眼计算:
增斜段
稳斜段
4.三维定向井
设计的井眼轴线,既有井斜角的变化,又有方位角的变化,这类井段为三维定向井,实际作业中,有时会碰到三维定向井的问题,大体上分为三种情况。
第一种情况 原设计为两维定向井,在实钻中偏离了目标方位,如果偏得不多,只要调整钻具组合或扭一次方位就可以了。严格地说,实钻的定向井轨迹,都有井斜角的变化和方位角的变化,这种三维定向井可以简化为二维的。
第二种情况 在地面井位和目标点确定的情况下,在这两点的铅垂平面内,存在着不允许通过或难以穿过的障碍物,不能在铅垂平面上设计轨道,需要绕过障碍,设计绕障三维定向井。在海上丛式井经常碰到这类井。
第三种情况在地面井位确定的情况下,要钻多目标井。地面井位和多目标点不在同一铅垂平面内,只有井斜角和方位角都变化,才能钻达设计的多个目标点。
三维定向井的轨迹设计和测斜计算很复杂,通常使用计算机软件完成这些工作。
第三节 井眼轨迹控制技术
井眼轨迹控制的内容包括:优化钻具组合、优选钻井参数、采用先进的井下工具和仪器、利用计算机进行井眼轨迹的检测预测、利用地层的方位漂移规律、避免井下复杂情况等等。
轨迹控制贯穿钻井作业的全过程,它是使实钻井眼沿着设计轨道钻达靶区的综合性技术,也是定向井施工中的关键技术之一。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术,其中直井段的控制技术见第七章第四节。
一.定向选斜井段
初始造斜方法有五类,即井下马达和弯接头定向、喷射法、造斜器法、弯曲导管定向、倾斜钻机定向。目前,我国海洋定向井一般采用第一种方式,常用造斜钻具组合为:钻头十井下马达十弯接头十非磁钻铤十普通钻铤( 0~30米)十挠性接头十震击器十加重钻杆。
这种造斜钻具组合是利用弯接头使下部钻具产生一个弹性力矩,迫使井下动力钻具驱动钻头侧向切削,使钻出的新井眼偏离原井眼轴线,达到定向造斜或扭方位的目的。
造斜钻具的造斜能力主要与弯接头的弯角和动力钻具的长度有关。弯接头的弯角越大,动力钻具长度越短,造斜率也越高。
弯接头的弯角应根据井眼大小、井下动力钻具的规格和要求造斜率的大小选择。现场常用弯接头的弯角为1.5~2.25度,一般不大于2.5度。弯接头在不同条件下的造斜率见第四节。
造斜钻具组合使用的井下动力钻具型号应根据造斜井段或扭方位井段的井深选择。使用井段在2000米以内,一般采用涡轮钻具或普通螺杆钻具,深层走向造斜或扭方位应使用耐高温的多头螺杆钻具。
造斜钻具组合、钻井参数和钻头水眼应根据厂家推荐的钻井参数设计。
由于井下动力钻具的转速高,要求的钻压小〔一般为29.4~ 78.4千牛(3~8吨)〕,因此,使用的钻头不宜采用密封轴承钻头,尤其是在浅层,可钻性好的软地层应使用铣齿滚动轴承钻头或合适的PDC钻头。
根据测斜仪器的种类不同,分为四种定向方式:
1.单点定向
此方法只适用造斜点较浅的情况,通常井深小于1000米。因为造斜点较深时,反扭角很难控制,且定向时间较长。施工过程如下:
(l)下入定向造斜钻具至造斜点位置(注意:井下马达必须按厂家要求进行地面试验)。
(2)单点测斜,测量造斜位置的井斜角,方位角,弯接头工具面;
(3)在测斜照相的同时,对方钻杆和钻杆进行打印,并把井口钻杆的印痕投到转盘面的外缘上,作为基准点;
(4)调整工具面(调整后的工具面是:设计方位角十反扭角)。锁住转盘、开泵钻进;
(5)定向钻进。每钻进2~4个单根进行一次单点测斜,根据测量的井斜角和方位角及时修正反扭矩的误差,并调整工具面;
(6)当井斜角达到8~10度和方位合适时,起钻换增斜钻具,用转盘钻进。在单点定向作业中要注意:
①在确定了反扭角和钻压后,要严格控制钻压的变化范围,通常在预定钻压±19.6千牛(2吨)内变化;
②每次接单根时,钻杆可能会转动一点,注意转动钻杆的打印位置至预定位置;
③如果调整工具面的角度较大(>90度),调整后应活动钻具2~3次(停泵状态),以便钻杆扭矩迅速传递。
2.地面记录陀螺(SRO)定向
在有磁干扰环境的条件下(如套管开窗侧钻井)的定向造斜,需采用SRO定向。这种仪器可将井下数据通过电缆传至地面处理系统,并显示或用计算机打印出来,直至工具面调整到预定位置,再起出仪器,施工过程如下:
(l)选择参照物,参照物应选择易于观察的固定目标,距井40米左右;
(2)预热陀螺不少于15分钟,工作正常才可下井;
(3)瞄准参照物,并调整陀螺初始读数;
(4)接探管,连接陀螺外筒,再瞄准参照物,对探管和计算机初始化;
(5)下井测量,按规定作漂移检查;
(6)起出仪器坐在井口,再次瞄准参照物记录陀螺读数;
(7)校正陀螺漂移,确定测量的精度;
(8)定向钻进。
3.有线随钻测斜仪(SST)定向
造斜钻具下到井底后,开泵循环半小时左右,然后接旁通头或循环接头。把测斜仪的井下仪器总成下入钻杆内,使定向鞋的缺口坐在定向键上。定向造斜时,可从地面仪表直接读出实钻井眼的井斜、方位和工具面,司钻和定向井工程师要始终跟踪预定的工具面方向,保持井眼轨迹按预定方向钻进。
4.随钻测量仪(MWD)定向
MWD井下仪器总成安装在下部钻具组合的非磁钻铤内,其下井前要调整好工作模式和传输速度,并准确地测量偏移值,输入计算机。仪器在井下所测的井眼参数通过钻井液脉冲传至地面,信息经地面处理后,可迅速传到钻台。MWD不仅可用于定向造斜,也可用于旋转钻进中的连续测量,是一种先进的测量仪器。
5.定向造斜中的注意事项:
(1)如果定向作业前的裸眼段较长,应短起下钻一趟,保证井眼畅通。
(2)井下马达下井前应在井口试运转,测量轴承间隙;记录各种参数,工作正常方可下井;
(3)MWD等仪器下井前,必须输入磁场强度、磁倾角等参数;
(4)定向造斜钻进,要按规定加压,均匀送钻,以保持恒定的工具面。
(5)造斜钻进或起下钻,用旋扣钳或动力水龙头上卸扣,不得用转盘上卸扣;
(6)起钻前方位角必须在20~30米井段内保持稳定,且保证预定的提前角。目前,“一次造斜
到位法”也经常在我国海洋定向井中使用,这种方法适用于造斜点较浅,且机械钻速很快的造斜井段,常常配合使用随钻测量仪。
(7)井下马达出井时,按规定程序进行清洗、保养。
狗腿度(狗腿严重度,全角变化率)K,全角变化率定义为“单位井段长度井眼轴线在三维空间的角度变化”,而单位井段长度取决于生产实际中测斜需要。它既包含了井斜角的变化又包含着方位角的变化。常用“°/100m”表示,实际生产工作中常用“°/30m”来表示。如果一点超3度甲方罚款了事,1点超5度也有填井的危险,在这过程当中看甲方对井队是怎么要求了。各油田要求可能不一,以上仅供参考。
㈥ 我对石油钻井和测井中的全角变化率(狗腿度)不是很了解.能否详细的讲讲。1.5°/30m是什么意思是每30米
全角变化率如果单纯说1.5°/30m意思就是井斜没三十度米的井斜变化为1.5度。如果说要求控制全角变化率,就像钻井设计中的为施工过程中制定的范围,它指的就是30米之内不能超过1.5。如果从现场测量后的出的数据,就是指三十米的两个测点之间的井斜变化为1.5。希望你能明白。
㈦ 狗腿度的介绍
狗腿度(狗腿严重度,全角变化率)K
㈧ 狗腿度计算公式
你是用的第一套公式来做的吧.
就是先把角度转换为长度0B=Δφ.
再作垂线BC,用角度转换求的A点,CA=Δα
最后测量AB的长度,就可以转为角度(即狗腿度)