导航:首页 > 计算方法 > 灰管热膨胀量计算方法

灰管热膨胀量计算方法

发布时间:2022-07-06 04:47:04

㈠ 蒸汽管道的热膨胀的计算公式是什么

以下是施工实践,没有算式,不能做作业答案
膨胀量与压力管径和无关.
你这样好记----100米管子温度变化1摄氏度,长度变化1.3毫米.
或者1米管子温度变化100摄氏度,长度变化1.3毫米.
http://..com/question/56258374.html

㈡ 你好:请问混凝土的热膨胀系数是多少,怎么计算呢

混凝土的热膨胀系数是8~12xE-6/℃,决定于骨料种类、含量和混凝土配合比。按平均热膨胀系数(10xE-6/℃)计算,
混凝土的热膨胀系数随骨料种类、骨料含量、混凝土龄期等因素影响有一定差异。普通强度(C30-C50)混凝土的热膨胀系数在
0.00001/度
左右。
混凝土构件的热膨胀量计算需要知道起始温度。假定起始温度为20度,则温度从20度升高到50度,100米(100,000毫米)长度混凝土的膨胀量为:
100,000mm
x(50-20)度
x0.00001/度
=
30
mm

㈢ 弯管膨胀计算

膨胀量和弯曲半径是二个概念. 弯管可以承受多大的膨胀量. 膨胀量就是热膨胀量.钢管的热膨胀是(0.0000118/度) 每升温一度.如100毫米直径钢管. 升温100度.就会膨胀到100.118毫米. 升温200度.就会膨胀到100.236毫米. 弯管的弯曲半径. 钢管在弯管的弯曲半径中. 弯曲半径的内径因材料拥挤在一起会变厚. 弯曲半径的外径因材料在拉延在一起会变薄.(薄了抗拉强度就低) 如果弯曲半径太小.弯曲半径是间就会是椭圆型. 如果弯曲半径太,达不到弯曲效果.一般是用一定的手段. 达到一定比较小的弯曲半径.又不会椭圆.变薄量比较小. 关于最小弯曲半径.大都机械书上多有例子. 你要把钢管直径.和需要弯曲半径.承受的膨胀量.写出来.

㈣ 求大神解答 管道热膨胀量计算公式中的L:计算管道长度是指

L指的是直管段两固定支架间的管道长度,补偿器、伸缩节、膨胀节就好像同物不同名,其实都指的是同一种东西,通过和施工单位接触后,个人观点,大家别喷,工程上习惯称的补偿器通常指波纹补偿器、方型伸缩器,伸缩节和膨胀节通常指补偿因温度差与机械振动引起的附加应力,而设置在容器壳体或管道上的一种挠性结构,通常和蝶阀配套使用。

㈤ 管道的热膨胀量应怎样计算

热膨胀量=管道长度*线膨胀系数*温差*1000
mm对于一般钢管热膨胀量=0.012*管道长度*温差mm

㈥ 材料热膨胀计算

1、SUS303金属在100℃ 到700℃ 之间热膨胀系数是11-16 *10-6 / ℃,膨胀长度=金属长度*温度差*热膨胀系数;
2、钨钢在100℃ 到700℃ 之间热膨胀系数6-7 *10-6 / ℃,膨胀长度=金属长度*温度差*热膨胀系
热膨胀系数影响因素
1:化学矿物组成。
热膨胀系数与材料的化学组成、结晶状态、晶体结构、键的强度有关。组成相同,结构不同的物质,膨胀系数不相同。通常情况下,结构紧密的晶体,膨胀系数较大;而类似于无定形的玻璃,往往有较小的膨胀系数。键强度高的材料一般会有低的膨胀系数。 [4]
2:相变。
材料发生相变时,其热膨胀系数也要变化。纯金属同素异构转变时,点阵结构重排伴随着金属比容突变,导致线膨胀系数发生不连续变化。
3:合金元素对合金热膨胀有影响。
简单金属与非铁磁性金属组成的单相均匀固溶体合金的膨胀系数介于内组元膨胀系数之间。而多相合金膨胀系数取决于组成相之间的性质和数量,可以近似按照各相所占的体积百分比,利用混合定则粗略计算得到。
4:织构的影响。
单晶或多晶存在织构,导致晶体在各晶向上原子排列密度有差异,导致热膨胀各项异性,平行晶体主轴方向热膨胀系数大, 垂直方向热膨胀系数小。
5:内部裂纹及缺陷也会对热膨胀系数产生影响

、我帮你查到了碳钢的线膨胀系数为:在20——300°C时,线膨胀系数为:12.1~13.5×10^-8(C^-1)
2、对于钢制零件的热膨胀量计算是一个相对较复杂的过程,而且,其计算结果受制于多种因素的制约,包括材料的轧制方向,钢材是有轧制方向的,所以,其线膨胀量是存在各项异性的。
3、基于上述因素,一般在工程上基本不会在理论上去计算零件因温度的变化而产生的膨胀量,因为计算是很难与实际相符合的,基本上没有多大的指导性意义
4、由碳钢的线膨胀系数可知:在20——300°C时,材料的膨胀量是非常微小的
5、对于薄壁管状零件,其热变形,其内孔不见得是缩小,有可能是胀大的趋势
6、在机械设计中,大可不必去操心做这样的繁复计算(也计算不准),可以直接在设计时用常规的公差配合来调配即可

如何计算热膨胀力

就碳钢瞬时线性热膨胀系数计算模型的建立为例:
当材料的温度由Tref(基准的参考温度)变化到T时,材料长度L的相对变化为:

(1)

根据密度ρ与L3成反比,可推导出εth与ρ间存在以下关系:

(2)

则瞬时线性热膨胀系数定义为:

(3)

由此可见,欲求出瞬时线性热膨胀系数,关键在于确定碳钢在不同温度下的密度值。
以〔C〕≤0.8 %的碳钢为研究对象,根据其冷却时凝固组织的特点(见图1),按照碳含量分为以下4组:
Ⅰ.〔C〕<0.09 %:
L→L+δ→δ→δ+γ→γ→α+γ→α+Fe3C
Ⅱ.〔C〕=0.09 %~0.16 %:
L→L+δ→δ+γ→γ→α+γ→α+Fe3C
Ⅲ.〔C〕=0.16 %~0.51 %:
L→L+δ→L+γ→γ→α+γ→α+Fe3C
Ⅳ.〔C〕=0.51 %~0.80 %:
L→L+γ→γ→α+γ→α+Fe3C
碳钢凝固组织为多相混合体系,其密度按照式(4)和式(5)确定,即:

(4)

f1+f2+…+fi=1 (5)

其中,fi为体系中组分i的质量分数,可利用相图,根据杠杆规则由程序计算确定。组分i(i为L、δ、γ、α或Fe3C)的密度为温度和碳含量的函数:ρ〔T,(i)〕=ρi(T,C),其值取自文献〔6〕。
计算线性热膨胀系数时,选固相线温度为基准参考温度。热膨胀系数由固相线处的数值线性地降低到零强度温度(即固相分率fs=0.8对应的温度)处的零值,在零强度温度以上范围,热膨胀系数保持为零。这样,就可以避免液相区产生热应力。

图1 铁碳相图
Fig.1 Fe-C phase diagram

1.2 铸坯热—弹—塑性应力模型简介
利用有限元法,先计算铸坯温度场,然后将计算结果以热载荷的形式引入应力场。
1.2.1 铸坯温度场的计算
忽略拉坯方向传热,并根据对称性,取铸坯1/4断面薄片,其四边形4节点等参单元网格如图2所示。非稳态二维传热控制方程为:

图2 计算域及铸坯单元网格示意图

Fig.2 Simulation domain and FEM meshused for analysis

(6)

初始温度为浇铸温度,铸坯表面散热热流采用现场实测值:q=2 688-420 t1/2 kW/m2,中心对称线处为绝热边界。模型中采用的热物理性能参数均随温度而变化,并且利用等效比热容c来考虑潜热的影响。另外,液相区对流效果通过适当放大液相区导热系数来实现。
1.2.2 铸坯应力场的计算
为利用温度场计算结果,采用与温度场一致的铸坯网格划分方法。体系中结晶器铜板为刚性接触边界,通过控制其运动轨迹(包括运动方向和速度)来表征结晶器锥度。若铸坯表面某个节点与铜板间距离小于规定的接触判据,则认为在此处发生接触,对该节点施加接触约束(避免节点穿越铜板表面),否则按自由边界处理。
计算时将液、固区域作为一个整体,对高于液相线温度的材料的力学参数作特殊处理,使液相区应力状态保持均匀的静压力状态,且施加在外部的钢水静压力可基本保持原值地传递到固态坯壳内侧。根据对称性,应在中心对称线上施加垂直方向的固定位移约束,但由于只关心坯壳的位移场,且坯壳厚度一般不会超过15 mm,所以只在距表面15 mm的范围内施加约束。超出15 mm的范围基本上为液相区,在其外边缘(对称线处)施加钢水静压力(压力值正比于离弯月面的距离)。
上述体系的力平衡方程为:

(7)

式中,〔K〕为系统的总刚矩阵;{δi}为节点位移列阵;{Rexter}为系统外力(钢水静压力和结晶器铜壁的接触反力)引起的等效节点载荷列阵;{Rε0}为热应变引起的等效节点载荷列阵。考虑包晶相变的影响,在计算{Rε0}时采用前面计算出的碳钢线性热膨胀系数曲线。
计算采用热—弹—塑性模型,假定铸坯断面处于广义平面应变状态,服从Mises屈服准则和等向强化规律,其硬化曲线为分段线性〔7〕。
2 计算结果及讨论
以碳含量为0.045 %、0.100 %和0.200 %的3种碳钢作为计算对象,采用相同的计算条件,即:铸坯断面尺寸为:150 mm×150 mm, 拉 坯 速 度1.5 m/min,浇铸温度1 550 ℃,结晶器长700 mm、锥度0.8 %,弯月面距结晶器上口距离100 mm。
2.1 3种碳钢的瞬时热膨胀系数
图3为计算出的碳钢的瞬时线性热膨胀系数曲线。可以看出:当〔C〕=0.045 %时,热膨胀系数在固相线温度以下区域突然变化。这是因为钢液凝固后发生初生的δ相→γ相的转变,并伴随有比容变化,使得热膨胀系数急剧上升;当〔C〕=0.100 %时,热膨胀系数从两相区开始发生突变。这是因为钢液凝固时,液相和δ相发生包晶反应,转变成γ相,剩余的δ相继续向γ相转变。转变过程中的比容变化也引起热膨胀系数的急剧上升。

图3 碳钢的瞬时线性热膨胀系数曲线
3条曲线中,非零值起始点为零强度温度对应点;
A、B、C为固相线温度对应点

Fig.3 Instant linear thermal expansion

coefficient of carbon steel
另外,〔C〕=0.045 %的δ相→γ相转变温度区间较窄,转变较快(见图1),因此线性热膨胀系数突变值较大。相比之下,〔C〕=0.100 %的热膨胀系数突变值要小一些。虽然如此,但由于后者的相变温度区间较宽,其热膨胀系数突变的温度区间也较宽。由此可推断,〔C〕=0.100 %时发生的包晶相变对初生坯壳凝固收缩的影响将大于〔C〕=0.045 %时发生的δ相→γ相转变的影响。
〔C〕=0.200 %钢的热膨胀系数没有发生突变。这是因为,虽然也有包晶相变发生,但它只发生在某个温度水平上(约1 495 ℃),故对热膨胀系数的影响很小。
2.2 铸坯表面收缩量
图4示出〔C〕=0.045 %、0.100 %和0.200 % 3种钢的铸坯表面收缩量沿拉坯方向和横断面方向的变化情况 ( 其中底部的空间斜平面为结晶器铜板

图4 铸坯表面收缩量
(a) 〔C〕=0.045 %; (b) 〔C〕=0.100 %; (c) 〔C〕=0.200 %
Fig.4 Surface shrinkage of billet

内壁面)。从图中可以看出:铸坯角部在凝固的初期就收缩并脱离结晶器铜板,而靠近中间处几乎始终与铜板接触(只有〔C〕=0.100 %的钢在靠近出口处才保持分离)。越靠近角部收缩脱离越早,收缩量也越大。
在钢水静压力作用下,收缩的坯壳会被压回结晶器铜板,从而使坯壳收缩发生波动〔收缩面曲面图呈犬牙状(见图4)〕。靠近弯月面区域坯壳较薄,波动现象较为明显。另外,越靠近角部波动也越明显。初生坯壳的这种收缩波动会导致应力集中,容易诱发裂纹等表面缺陷。
比较3种碳钢铸坯的表面收 缩 量 可 知:〔C〕=0.100 %钢的收缩最显着,收缩波动最大(弯月面区域),且波动沿横断面方向扩展最广;〔C〕=0.200 %钢的收缩量最小。
2.3 弯月面区域角部初生坯壳收缩状况
图5示出3种碳钢的铸坯角部在靠近弯月面区域的收缩情况。可以看出:在离弯月面20 mm范围内,铸坯角部就脱离了结晶器铜板,其中〔C〕=0.045 %钢脱离最早,这是因为该钢种的固相线温度最高,最早凝固形成坯壳;〔C〕=0.100 %钢在形成初生坯壳后发生强烈收缩,但在离弯月面50 mm处被增大的钢水静压力压回,然后又继续收缩。该钢种初生坯壳收缩最显着,收缩波动也最大,因此最容易诱发铸坯表面缺陷;〔C〕=0.045 %钢的初生坯壳收缩量和收缩波动程度明显地降低;〔C〕=0.200 %钢的初生坯壳收缩量和收缩波动程度最小。

图5 弯月面区域初生坯壳角部收缩量

Fig.5 Shrinkage of initial shell ofbillet corner at meniscus

3 结 论
(1)对于碳含量在0.1 %附近的包晶钢,其初生坯壳在结晶器上部和靠近角部区域的收缩很不规则,容易诱发铸坯表面缺陷。
(2)坯壳不规则收缩主要集中在弯月面下100 mm范围内。由此可知,结晶器上部的锥度并不适合坯壳收缩。因此,应通过优化结晶器锥度来提高拉坯速度。一个重要的指导原则是在结晶器上部采用较大锥度,以促使坯壳与铜板良好接触。

㈧ 管道热膨胀量计算

钢材的线胀系数为0.000012,假设它为-20℃吧。膨胀量△L=50000×[200—(—20)]×0.000012=132(mm)。如果最低环境温度值为20℃,则膨胀量 △L=50000×[200—20]×0.000012=108(mm). 长度方向的膨胀量只与管长度有关,与管径、管厚度值无关。

膨胀系数是表征物体热膨胀性质的物理量,即表征物体受热时其长度、面积、体积增大程度的物理量。长度的增加称“线膨胀”,面积的增加称“面膨胀”,体积的增加称“体膨胀”,总称之为热膨胀。

由于物质的不同,线膨胀系数亦不相同,其数值也与实际温度和确定长度1时所选定的参考温度有关,但由于固体的线膨胀系数变化不大,通常可以忽略,而将a当作与温度无关的常数。

大多数情况之下,此系数为正值。也就是说温度升高体积扩大。但是也有例外,当水在0到4摄氏度之间,会出现反膨胀。而一些陶瓷材料在温度升高情况下,几乎不发生几何特性变化,其热膨胀系数接近0。

㈨ 管道的热变形计算公式是是吗


.
管道的热变形计算:
计算公式:
X=a*L*△T
x
管道膨胀量
a为线膨胀系数,取0.0133mm/m
L补偿管线(所需补偿管道固定支座间的距离)长度
△T为温差(介质温度安装时环境温度)

阅读全文

与灰管热膨胀量计算方法相关的资料

热点内容
雀斑怎么治疗适合的方法 浏览:222
公园护栏的制作方法视频 浏览:791
课题研究与方法 浏览:290
看书记不得怎么办有什么好方法 浏览:306
新生儿正确的喂奶方法 浏览:717
检测乙醛方法标准 浏览:582
可以填哪些数一年级方法 浏览:365
如何用科学方法理财 浏览:406
检测受体的密度和数量用什么方法 浏览:26
苹果二手机验机方法的软件 浏览:158
用跑步机跑步的正确方法 浏览:659
长沙胆结石哪些方法治疗好 浏览:351
鸡脚的正确安装方法 浏览:502
如何正确泡奶粉的方法 浏览:23
豆腐脑不出水最简单的方法 浏览:337
法兰软连接使用方法 浏览:453
尿不湿正确睡眠方法 浏览:645
平行四边形abcd角度计算方法 浏览:93
win7系统屏幕时间设置在哪里设置方法 浏览:637
耳鸣手术有哪些方法 浏览:763