导航:首页 > 计算方法 > 路径计算方法

路径计算方法

发布时间:2022-06-30 23:48:14

⑴ 最短路径法如何计算

最短路径算法有三种,Floyd,dijkstra,Bellman_Ford。其中,Floyd适合用于计算每两点间的路径,dijkstra适合稀疏图,bellman则适合稠密图中的已知起点终点,计算最短路径的问题。时间复杂度,floyd算法为n立方,dijk为n平方,bellman为n平方,其中n是点数。dijk可用堆维护,时间复杂度可减至nlogn,而bellman可用队列维护,此方法于1994年被国人提出,命名比较土鳖叫SPFA(shortest path faster algorithm。。。)。至于如何计算,有了名字,搜一下就ok。

⑵ pmp如何计算关键路径

pmp计算关键路径的方法如下:

关键路径法(Critical Path Method)是一种用来预测总体项目历时的项目源网络分析技术。所谓“关键路径”,是指当我们完成了项目进计划后,在项目的网络图上,存在着若干条从项目启动到项目结束之间的路径,但是对其中一条(严格的来说,可能存在一条以上)路径上来说。

所谓正推法就是从项目的第一个活动到最后一个活动跟踪全部活动的先后关系,计知算出每个活动的最早开始时间(ES)和最早结束时间(EF)。

所谓倒道推法则是从最后一个活动开始向前追溯到第一个活动,计算出每个活动的最晚开始时间(LS)和最晚结束时间(LF)。

PMP作为项目管理资格认证考试,已在国际上树立了其权威性:

1、PMP为美国培养了一大批项目管理专业人才,项目管理职业已成为美国的“黄金职业”。在中国许多媒体已把PMP称为继MBA,MPA之后的三大金字招牌之一;

2、PMP认证已成为了一个国际性的认证标准,用英语、德语、法语、日语、韩语、西班牙语、葡萄牙语和中文等九种语言进行认证考试;

3、到目前为止,全球有80多万名PMP,中国大陆地区获得“PMP”头衔的已有18万多人,并逐年增长;

4、各国纷纷效仿美国的项目管理认证制度,推动了世界项目管理的发展。

⑶ 最短路径算法

Dijkstra算法,A*算法和D*算法

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式,Drew为了和下面要介绍的 A* 算法和 D* 算法表述一致,这里均采用OPEN,CLOSE表的方式。

大概过程:
创建两个表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
1. 访问路网中里起始点最近且没有被检查过的点,把这个点放入OPEN组中等待检查。
2. 从OPEN表中找出距起始点最近的点,找出这个点的所有子节点,把这个点放到CLOSE表中。
3. 遍历考察这个点的子节点。求出这些子节点距起始点的距离值,放子节点到OPEN表中。
4. 重复2,3,步。直到OPEN表为空,或找到目标点。

提高Dijkstra搜索速度的方法很多,常用的有数据结构采用Binary heap的方法,和用Dijkstra从起始点和终点同时搜索的方法。

A*(A-Star)算法是一种启发式算法,是静态路网中求解最短路最有效的方法。

公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。

保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值
if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
if(X not in both)
求X的估价值;
并将X插入OPEN表中; //还没有排序
}
将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
}

A*算法和Dijistra算法的区别在于有无估价值,Dijistra算法相当于A*算法中估价值为0的情况。

动态路网,最短路算法 D*A* 在静态路网中非常有效(very efficient for static worlds),但不适于在动态路网,环境如权重等不断变化的动态环境下。

D*是动态A*(D-Star,Dynamic A*) 卡内及梅隆机器人中心的Stentz在1994和1995年两篇文章提出,主要用于机器人探路。是火星探测器采用的寻路算法。

主要方法:
1.先用Dijstra算法从目标节点G向起始节点搜索。储存路网中目标点到各个节点的最短路和该位置到目标点的实际值h,k(k为所有变化h之中最小的值,当前为k=h。每个节点包含上一节点到目标点的最短路信息1(2),2(5),5(4),4(7)。则1到4的最短路为1-2-5-4。
原OPEN和CLOSE中节点信息保存。
2.机器人沿最短路开始移动,在移动的下一节点没有变化时,无需计算,利用上一步Dijstra计算出的最短路信息从出发点向后追述即可,当在Y点探测到下一节点X状态发生改变,如堵塞。机器人首先调整自己在当前位置Y到目标点G的实际值h(Y),h(Y)=X到Y的新权值c(X,Y)+X的原实际值h(X).X为下一节点(到目标点方向Y->X->G),Y是当前点。k值取h值变化前后的最小。
3.用A*或其它算法计算,这里假设用A*算法,遍历Y的子节点,点放入CLOSE,调整Y的子节点a的h值,h(a)=h(Y)+Y到子节点a的权重C(Y,a),比较a点是否存在于OPEN和CLOSE中,方法如下:
while()
{
从OPEN表中取k值最小的节点Y;
遍历Y的子节点a,计算a的h值 h(a)=h(Y)+Y到子节点a的权重C(Y,a)
{
if(a in OPEN) 比较两个a的h值
if( a的h值小于OPEN表a的h值 )
{ 更新OPEN表中a的h值;k值取最小的h值
有未受影响的最短路经存在
break;
}
if(a in CLOSE) 比较两个a的h值 //注意是同一个节点的两个不同路径的估价值
if( a的h值小于CLOSE表的h值 )
{
更新CLOSE表中a的h值; k值取最小的h值;将a节点放入OPEN表
有未受影响的最短路经存在
break;
}
if(a not in both)
将a插入OPEN表中; //还没有排序
}
放Y到CLOSE表;
OPEN表比较k值大小进行排序;
}
机器人利用第一步Dijstra计算出的最短路信息从a点到目标点的最短路经进行。

D*算法在动态环境中寻路非常有效,向目标点移动中,只检查最短路径上下一节点或临近节点的变化情况,如机器人寻路等情况。对于距离远的最短路径上发生的变化,则感觉不太适用。

⑷ 关键路径怎么

输入e条弧<j,k>,建立AOE网的存储结构;从源点v1出发,令ve(1)=0,求 ve(j),2<=j<=n;从汇点vn出发,令vl(n)=ve(n),求 vl(i),1<=i<=n-1。

根据各顶点的ve和vl值,求每条弧s(活动)的最早开始时间e(s)和最晚开始时间l(s),其中e(s)=l(s)的为关键活动。

求关键路径必须在拓扑排序的前提下进行,有环图不能求关键路径;只有缩短关键活动的工期才有可能缩短工期;若一个关键活动不在所有的关键路径上,减少它并不能减少工期;只有在不改变关键路径的前提下,缩短关键活动才能缩短整个工期。



(4)路径计算方法扩展阅读

在项目管理中,编制网络计划的基本思想就是在一个庞大的网络图中找出关键路径,并对各关键活动,优先安排资源,挖掘潜力,采取相应措施,尽量压缩需要的时间。

而对非关键路径的各个活动,只要在不影响工程完工时间的条件下,抽出适当的人力、物力和财力等资源,用在关键路径上,以达到缩短工程工期,合理利用资源等目的。在执行计划过程中,可以明确工作重点,对各个关键活动加以有效控制和调度。

关键路径法主要为一种基于单点时间估计、有严格次序的一种网络图。它的出现为项目提供了重要的帮助,特别是为项目及其主要活动提供了图形化的显示,这些量化信息为识别潜在的项目延迟风险提供极其重要的依据。

⑸ 路径的运算方法有几种

以前看到过,贴给你 Private Function OrderXY(X() As Double,Y() As Double) Dim i,j,k,m,n,num,temp As Double Dim NewX() As Double Dim NewY() As Double Dim Smin As Double '定义最短总距离 If UBound(X()) UBound(Y()) Then MsgBox "坐标错误":Exit Function '防止数据错误 n = UBound(X()) ReDim p(n) As Long p(0) = 0:num = 1 For i = 1 To n p(i) = i 'p()数组依次存储从0到n共n+1个数 num = num * i '计算num,num表示的是n个坐标(除X(0),Y(0)以外)共有n!种排列 Next ReDim Stance(num - 1) As Double '定义数组存储每种连接方法的总距离 ReDim NewX(n) ReDim NewY(n) For i = 0 To n - 1 'Stance(0)是按照原坐标顺序依次连接的总距离 Stance(0) = Stance(0) + Sqr((Y(i + 1) - Y(i)) * (Y(i + 1) - Y(i)) + (X(i + 1) - X(i)) * (X(i + 1) - X(i))) Next Smin = Stance(0) For k = 0 To n NewX(k) = X(k) NewY(k) = Y(k) Next i = n - 1 '下面对p()数组的n个数(除0以外)进行排列,每产生一种排列方式,坐标数组的数据就对应交换,并计算这一路径的总距离 Do While i > 0 If p(i) < p(i + 1) Then For j = n To i + 1 Step -1 '从排列右端开始 If p(i) = j Then Exit For temp = p(i):p(i) = p(j):p(j) = temp temp = X(i):X(i) = X(j):X(j) = temp temp = Y(i):Y(i) = Y(j):Y(j) = temp Next m = m + 1 For k = 0 To n - 1 Stance(m) = Stance(m) + Sqr((Y(k + 1) - Y(k)) * (Y(k + 1) - Y(k)) + (X(k + 1) - X(k)) * (X(k + 1) - X(k))) Next If Stance(m)

⑹ 关键路径怎么求求详解。

关键路径的算法是建立在拓扑排序的基础之上的,这个算法中用到了拓扑排序。

1. 什么是拓扑排序?

举个例子先:一个软件专业的学生学习一系列的课程,其中一些课程必须再学完它的基础的先修课程才能开始。如:在《程序设计基础》和《离散数学》学完之前就不能开始学习《数据结构》。这些先决条件定义了课程之间的领先(优先)关系。这个关系可以用有向图更清楚地表示。图中顶点表示课程,有向边表示先决条件。若课程i是课程j的先决条件,则图中有弧<i,j>。若要对这个图中的顶点所表示的课程进行拓扑排序的话,那么排序后得到的序列,必须是按照先后关系进行排序,具有领先关系的课程必然排在以它为基础的课程之前,若上例中的《程序设计基础》和《离散数学》必须排在《数据结构》之前。进行了拓扑排序之后的序列,称之为拓扑序列。

2. 如何实现拓扑排序?

很简单,两个步骤:

1. 在有向图中选一个没有前驱的顶点且输出。

2. 从图中删除该顶点和以它为尾的弧。

重复上述两步,直至全部顶点均已输出,或者当前图中不存在无前驱的顶点为止。后一种情况则说明有向图中存在环。

3. 什么是关键路径?

例子开头仍然,图1是一个假想的有11项活动的A0E-网。其中有9个事件v1,v2......,v9,每个事件表示在它之前的活动一完成,在它之后的活动可以开始。如v1表示整个工程的开始,v9表示整个工程结束,v5表示a4和a5已完成,a7和a8可以开始。与每个活动相联系的数是执行该活动所需的时间。比如,活动a1需要6天,a2需要4天。

packagegraph;
importjava.util.*;
publicclassGrph_CriticalPath
{
Graph_AdjListadjList;
Stack<Integer>T=newStack<Integer>();
intve[];
intvl[];
finalintmax=10000;

publicGrph_CriticalPath(Graph_AdjListadjList)//图的存储结构是用的邻接表
{
this.adjList=adjList;
intlength=adjList.vetexValue.length;
ve=newint[length];
vl=newint[length];
for(inti=0;i<length;i++)
{
ve[i]=0;
vl[i]=max;
}
}

publicvoidgetCriticalPath()
{
topologicalOrder();

intt=T.pop();
T.push(t);
vl[t]=ve[t];
while(!T.isEmpty())
{
intj=T.pop();
for(Graph_AdjList.ArcNodep=adjList.vetex[j].firstArc;p!=null;p=p.next)
{
intk=p.adjvex;
if(vl[k]-p.weight<vl[j])
{
vl[j]=vl[k]-p.weight;
}
}
}
for(inti=0;i<ve.length;i++)
{
for(Graph_AdjList.ArcNodep=adjList.vetex[i].firstArc;p!=null;p=p.next)
{
intk=p.adjvex;
intee=ve[i];
intel=vl[k]-p.weight;
if(ee==el)
{
System.out.print(i+","+k+"");
}

}
}
}

publicvoidtopologicalOrder()
{
Stack<Integer>S=newStack<Integer>();
S.push(0);
intcount=0;
while(!S.isEmpty())
{
intj=S.pop();
T.push(j);
count++;
Graph_AdjList.ArcNodep=null;
for(p=adjList.vetex[j].firstArc;p!=null;p=p.next)
{
intk=p.adjvex;
if(--adjList.degree[k]==0)
{
S.push(k);
}
if(ve[j]+p.weight>ve[k])
{
ve[k]=ve[j]+p.weight;
}
}
}
if(count<adjList.vetexValue.length)
{
System.out.println("图中存在环路!");
return;
}
}

publicvoidprint()
{
while(!T.isEmpty())
{
System.out.print(T.pop()+"");
}
}

publicvoidprintVel()
{
System.out.println();
for(inti=0;i<ve.length;i++)
{
System.out.print(ve[i]+"");
}
System.out.println();
for(inti=0;i<vl.length;i++)
{
System.out.print(vl[i]+"");
}
}


}

转自:http://blog.csdn.net/pigli/article/details/5777048

⑺ photoshop怎么对路径进行运算

photoshop对路径进行运算方法是:

1、新建白色背景文件,创建新图层;

⑻ photoshop中两个路径的合并计算一共有四种计算方式

是的。分别是:合并形状、减去顶层形状、与形状区域相交、排除重叠形状

⑼ 路径的运算方法有几种

题主没有说明路径的算法具体指哪种?比较常规的话,比举个例子来说,a到b有三种途径,b到c有四种途径。提问,从a到c有几种路径可以走?那么这种题目需要用乘法,因为
从a到b
有四种。选择从b到c有三种选择,所以每次都有
不同的选择
,需要用乘法那应该是3×4等于12所以从a到c有12种路径。

⑽ 哈弗H8有多少种路径计算方式

哈弗H8触摸【路径计算】按钮,进入路径计算画面。

·重新计算:重新计算当前的路径。

·绕行计算:在已计算的路径中,绕开所选公里数(可选2KM、4KM、6KM)的一段路径,重新计算。若当前只有一条路可达到目的地,则不绕开。

·多路径计算:将计算并显示{4{种路线方案。

此问题适用于2018款车型。

阅读全文

与路径计算方法相关的资料

热点内容
华三路由器复位方法用手机 浏览:547
爱心的教学方法 浏览:632
清洗头皮屑的方法简单 浏览:208
java如何调用js中的eval方法 浏览:800
草缸戊二醛使用方法 浏览:126
社会研究方法参考书是谁的 浏览:106
幼儿园去除甲醛方法是什么 浏览:791
买苹果的正确方法图片 浏览:13
讲述模式对应的教学方法 浏览:169
如何写广告文案的方法 浏览:388
腌制咸鸭蛋最简单的方法视频 浏览:130
对苯醌的含量分析方法 浏览:437
训练宽背的方法 浏览:526
纠正孩子骨盆前倾的锻炼方法 浏览:317
急性大脑中血管梗塞最佳治疗方法 浏览:211
该用什么方法钓鲤鱼 浏览:497
失恋怎么解决方法 浏览:798
空气呼吸器的使用方法视频 浏览:208
手机出现竖道怎么简单方法能排除 浏览:124
碳水化合物分离和鉴定的常用方法 浏览:502