导航:首页 > 计算方法 > 冷负荷计算方法两种

冷负荷计算方法两种

发布时间:2022-06-30 05:52:23

‘壹’ 冷负荷怎么

以下介绍冷库制冷量中最主要部分冷却设备负荷和机械负荷的计算。

第1条 冷库制冷量的冷间冷却设备负荷应按下式计算:

Qq=Q1+PQ2+Q3十Q4+Q5

Qq一冷间冷却设备负荷(千卡/小时):

Q1一围护结构传热量(千卡/小时);

Q2一货物热量(千卡/小时);

Q3一通风换气热量(千卡/小时);

Q4一电动机运转热量(千卡/小时);

Q5一操作热量(千卡/小时);

P一负荷系数(千卡/小时)。

第2条 冷库冷却间和冻结间的负荷系数P应取1.3,其它冷间取1。

第3条 冷库制冷量的冷间机械负荷应分别根据不同蒸发温度按下式计算:

Qj=(n1∑Q1+N2∑Q2+N3∑Q3+N4∑Q4+N5∑Q5)R

式中Qj一机械负荷(千卡/小时);

n1一冷库的围护结构传热量的季节修正系数;

n2一货物热量的机械负荷折减系数;

n3一同期换气系数,一般取0.5-1.0(“同时最大换气量与全库每日总换气量的比数”大时取大值);

n4一冷库冷间用的电动机同期运转系数;

n5一冷库的冷间同期操作系数;

R一冷库的制冷装置和管道等冷损耗补偿系数,一般直接冷却系统取l.07,间接冷却系统取1.12。

第4条 冷库制冷量中围护结构传热量的季节修正系数(n1),一般应根据生产旺季出现的月份,按附录三规定采用。当全年生产无明显淡旺季区别时,应取1。

第5条 冷库制冷量中货物热量的机械负荷折减系数(n2)应根据冷间的性质确定,冷加工间和其它冷间应取1;冷却物冷藏间宜取0.3-0.6;冻结物冷藏间宜取0.5-0.8。

第6条 冷库冷间用的电动机同期运转系数(n4)和冷间的同期操作系数(n5),应按表1规定采用。

表1

注: 1.本表中“冷间用电动机同期运转系数”(n4),冷却间、冻结间中的冷风机,其值取1;其它冷间则按本表取值。

2.“冷间总间数”应按同一蒸发温度且用途相同的冷间间数计算。

‘贰’ 新风冷负荷如何计算

新风负荷的计算

夏季空调新风冷负荷

(2)冷负荷计算方法两种扩展阅读:

空调区、空调系统新风量计算的有关规定:

人员所需新风量,应根据人员的活动和工作性质,以及在室内的停留时间等确定;空调区的新风量,应按不小于人员所需新风量,补偿排风和保持室内空调区空气压力所需新风量之和以及新风除湿所需新风量中的最大值确定;全空气系统的新风量,当系统服务于多个不同新风比的空调区时,系统新风比应小于空调区新风比的最大值;新风系统的新风量,宜按所服务空调区或系统的新风量累计值确定。

‘叁’ 冷库冷负荷怎么计算

板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。以下五个参数在板式换热器的选型计算中是必须的:总传热量(单位:kW).一次侧、二次侧的进出口温度一次侧、二次侧的允许压力降最高工作温度最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。温度T1 = 热侧进口温度T2 = 热侧出口温度t1 = 冷侧进口温度t2= 冷侧出口温度热负荷热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:(热流体放出的热流量)=(冷流体吸收的热流量)在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。(1) 无相变化传热过程式中Q----冷流体吸收或热流体放出的热流量,W;mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);T1,t1 ------热、冷流体的进口温度,K;T2,t2------热、冷流体的出口温度,K。(2)有相变化传热过程两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化两侧物流均发生相变化 ,如一侧冷凝另一侧沸腾的传热过程式中r,r1,r2--------物流相变热,J/kg;D,D1,D2--------相变物流量,kg/s。对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。对数平均温差(LMTD)对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。逆流时:并流时:热长(F)热长和一侧的温度差和对数平均温差相关联。 F = dt/LMTD以下四个介质的物理性质影响的传热 密度、粘度、比热容、导热系数总传热系数总传热系数是用来衡量换热器传热阻力的一个参数。传热阻力主要是由传热板片材料和厚度、污垢和流体本身等因素构成。单位:W/m2 ℃ or kcal/h,m2 ℃.压力降压力降直接影响到板式换热器的大小,如果有较大的允许压力降,则可能减少换热器的成本,但会损失泵的功率,增加运行费用。一般情况下,在水水换热情况下,允许压力降一般在20-100KPa是可以解接受的。污垢系数和管壳式换热器相比,板式换热器中水的流动是处于高湍流状态,同一种介质的相对于板式换热器的污垢系数要小的多。在无法确定水的污垢系数的情况下,在计算时可以保留10%的富裕量。计算方法热负荷可以用下式表示:Q = m · cp · dtQ = k · A · LMTDQ = 热负荷 (kW)m = 质量流速 (kg/s)cp = 比热 (kJ/kg ℃)dt = 介质的进出口温度差 (℃)k = 总传热系数 (W/m2 ℃)A = 传热面积 (m2)LMTD = 对数平均温差总的传热系数用下式计算:其中:k=总传热系数(W/m2 ℃)α1 = 一次测的换热系数(W/m2 ℃)α2 = 一次测的换热系数(W/m2 ℃)δ=传热板片的厚度(m)λ=板片的导热系数 (W/m ℃)R1、R2分别是两侧的污垢系数 (m2 ℃/W)α1、α2可以用努赛尔准则式求得。 冷库热负荷的计算:基本情况 外型尺寸 冷库长 3.3 m 环境温度T1 30 ℃ 冷库宽 3.3 m 库内温度T2 -18 ℃ 冷库高 2.5 m 温度差 △T 48 ℃ 冷库容积 23 m3 库内照明 240 W 外表面积 18.2 m2 库内电机 210 W 隔热材料 种类 聚苯板 作业人数 2 人/日 厚度 0.15 m 作业时间 3 H 传热系数 0.025 Kcal/mh℃ (查表) 储藏物品 货物名称 日入库量 750 kg 冻结前比热 0.77 C (查表) 入库温度 30 ℃ 潜热 10 C (查表) 降温时间 8 h 冻结后比热 10 C (查表) 要求温度 -18 ℃ 侵入热(侧板) 隔热材料厚度 导热系数 温度差 △T 外表面积A Qa=λ/L×△T×A Qa 150 mm 0.166666667 48 33 264 Kcal/h侵入热(底板) 隔热材料厚度 导热系数 温度差 △T 外表面积A Qb=λ/L×△T×A Qb 150 mm 0.166666667 33 10.89 60 Kcal/h侵入热(天棚) 隔热材料厚度 导热系数 温度差 △T 外表面积A Qc=λ/L×△T×A Qc 150 mm 0.166666667 53 10.89 96 Kcal/hQ1计算 Q1=Qa+Qb+Qc 420 Kcal/h货物热(冻前) 入库量 比热 温度差 △T 降温时间 Qd=W×C×△T×1/T Qd 750 kg 0.77 48 8 3465 Kcal/h货物热(潜热) 入库量 比热 温度差 △T 降温时间 Qe=W×C×△T×1/T Qe 750 kg 10 8 0 Kcal/h货物热(冻后) 入库量 比热 温度差 △T 降温时间 Qf=W×C×△T×1/T Qf 750 kg 10 8 0 Kcal/hQ2计算 Q2=Qd+Qe+Qf 3465.00 Kcal/h换气热 内容积 开门次数 换气热量 — Q3=V×n×E×1/24 Q3 23 16 24.6 — 382 Kcal/h电灯热 总功率 日照时间 — — Q4=W×0.86×H×1/24 Q4计算 240 3 — — 26 Kcal/h电机热 总功率 日运转时间 — — Q5=W×0.86×H×1/24 Q5计算 210 24 — — 181 Kcal/h操作热 人数 工作时间 发热量 — Q6=N×H×C×1/24 Q6计算 2 3 240 — 60 Kcal/h除霜热 总功率 除霜时间H 除霜次数 — Q4=W×0.86×H×n×1/24 Q7计算 3938 0.5 4 — 282 Kcal/h全部热负荷 安全率Sf 1.1 运转率RT 0.8 QT QT=(Q1+Q2+Q3+Q4+Q5+Q6+Q7)×Sf/RT 6622.17 Kcal/h 压缩机型号为:8P

‘肆’ 空调冷负荷怎么计算

就是根椐使用面积计算出冷负荷量(我们南方办公室一般是150W-200W/平方),再根据冷量来配置内机,根据内机来配置外机(一般外机制冷量为内机冷负荷的70%)。

‘伍’ 如何计算冷负荷

1、冷负荷计算
(一)外墙的冷负荷计算
通过墙体、天棚的得热量形成的冷负荷,可按下式计算:
CLQτ=KF⊿tτ-ε W
式中 K——围护结构传热系数,W/m2•K;
F——墙体的面积,m2;
β——衰减系数;
ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度;
τ——计算时间,h;
ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h;
τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h;
⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。
(二)窗户的冷负荷计算
通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。
(a)窗户瞬变传热得形成的冷负荷
本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2•K。工程中用下式计算:
CLQτ=KF⊿tτ W
式中 K——窗户传热系数,W/m2•K;
F——窗户的面积,m2;
⊿tτ——计算时刻的负荷温差,℃。
(b)窗户日射得热形成的冷负荷
日射得热取决于很多因素,从太阳辐射方面来说,辐射强度、入射角均依纬度、月份、日期、时间的不同而不同。从窗户本身来说,它随玻璃的光学性能,是否有遮阳装置以及窗户结构(钢、木窗,单、双层玻璃)而异。此外,还与内外放热系数有关。工程中用下式计算:
CLQj•τ= xg xd Cs Cn Jj•τ W
式中 xg——窗户的有效面积系数;
xd——地点修正系数;
Jj•τ——计算时刻时,透过单位窗口面积的太阳总辐射热形成的冷负荷,简称负荷,W/m2;
Cs——窗玻璃的遮挡系数;
Cn——窗内遮阳设施的遮阳系数。
(三)外门的冷负荷计算
当房间送风两大于回风量而保持相当的正压时,如形成正压的风量大于无正压时渗入室内的空气量,则可不计算由于门、窗缝隙渗入空气的热、湿量。如正压风量较小,则应计算一部分渗入空气带来的热、湿量或提高正压风量的数值。
(a)外门瞬变传热得形成的冷负荷
计算方法同窗户瞬变传热得形成的冷负荷。
(b)外门日射得热形成的冷负荷
计算方法同窗户日射得热形成的冷负荷,但一层大门一般有遮阳。
(c)热风侵入形成的冷负荷
由于外门开启而渗入的空气量G按下式计算:
G=nVmγw kg/h
式中 Vm——外门开启一次(包括出入各一次)的空气渗入量(m2/人次•h),按下表3—9选用;
n——每小时的人流量(人次/h);
γw——室外空气比重(kg/m2)。
表3—9 Vm值(m2/人次•h)
每小时通过
的人数 普通门 带门斗的门 转门
单扇 一扇以上 单扇 一扇以上 单扇 一扇以上
100 3.0 4.75 2.50 3.50 0.80 1.00
100~700 3.0 4.75 2.50 3.50 0.70 0.90
700~1400 3.0 4.75 2.25 3.50 0.50 0.60
1400~2100 2.75 4.0 2.25 3.25 0.30 0.30
因室外空气进入室内而获得的热量,可按下式计算:
Q=G•0.24(tw-tn) kcal/h
(四)地面的冷负荷计算
舒适性空气调节区,夏季可不计算通过地面传热形成的冷负荷。工艺性空气调节区,有外墙时,宜计算距外墙2m范围内的地面传热形成的冷负荷,地面冷计算采用地带法(同采暖)。
(五)内墙、内窗、楼板、地面的冷负荷
内墙、内窗、楼板等围护结构,当邻室为非空气调节房间时,其室温基数大于3℃时,邻室温度采用平均温度,其冷负荷按下式计算:
Q=KF(twp+⊿tls-tn) W
式中 Q——内墙或楼板的冷负荷,W;
K——内墙或楼板的传热系数,W/m2•℃;
F——内墙或楼板的传热面积,m2;
tls——邻室计算平均温度与夏季空气调节室外计算日平均温度的差值,℃。
内墙、内窗、楼板等其邻室为空气调节房间时,其室温基数小于3℃时,不计算。
(六)室内得热冷负荷计算
(a)电子设备的冷负荷
电子设备发热量按下式计算:
Q=1000n1n2n3N W
式中 Q——电子设备散热量,W;
N——电子设备的安装功率,kW;
n1——安装系数。电子设备设计轴功率与安装功率之比,一般可取0.7~0.9;
n2——负荷功率。电子设备小时的平均实耗功率与设计轴功率之比,根据设备运转的实际情况而定。
n3——同时使用系数。房间内电子设备同时使用的安装功率与总功率之比。根据工艺过程的设备使用情况而定。
对于电子计算机,国外产品一般都给出设备发热,可按其给出的数字计算。本次设计每台计算机Qs=150W。
(b)照明设备
照明设备散热量属于稳定得热,一般得热量是不随时间变化的。
根据照明灯具的类型和安装方式的不同,其得热量为:
白炽灯 Q=1000N W
荧光灯 Q=1000 n1n2N W
式中 N——照明灯具所需功率,kW;
n1——镇流器消耗功率系数,当明装荧光灯的镇流器装在空调房间内时,取n1=1.2;当暗装荧光灯镇流器设在顶棚内时,可取n1=1.0;
n2——灯罩隔热系数,当荧光灯罩上部有小孔(下部为玻璃板),可利用自然通风散热与荧光灯顶棚内时,取n2=0.5~0.6;而荧光灯罩无通风孔者,则视顶棚内通风情况,n2=0.6~0.8。
(c)人体散热
人体散热与性别、年龄、衣着、劳动强度及周围环境条件等多种因素有关。人体散发的潜热量和对流热直接形成瞬时冷负荷,而辐射散发的热量将会形成滞后的冷负荷。实际计算中,人体散热可以以成年男子为基础,成以考虑了各类人员组成比例的系数,称群集系数。对于不同功能的建筑物中的各类人员(成年男子、女子、儿童等)不同的组成进行修正,下表给出了一些建筑物中的群集系数,作为参考。于是人体散热量为:
Q=qnn′ W
式中 q——不同室温和劳动性质时成年男子散热量,W;
n——室内全部人数;
n′——群集系数。
表3—11 某些空调建筑物内的群集系数
工作场所 影剧院 百货商店 旅店 体育馆 图书阅览室 工厂轻劳动
群集系数 0.89 0.89 0.93 0.92 0.96 0.90
设备、照明和人体散热得热形成的冷负荷,在工程上可用下式简化计算:
CLQτ=QJXε-T W
式中 Q——设备、照明和人体的得热,W;
T——设备投入使用时刻或开灯时刻或人员进入房间时刻,h;
τ-T——从设备投入使用时刻或开灯时刻或人员进入房间时刻到计算时间的时间,h;
JXε-T(JEε-T、JLε-T、JPε-T)——τ-T时间的设备负荷强度系数,照明负荷强度系数、人体强度负荷系数。
表3—12 设备器具散热的负荷系数JEτ-T
房间类 型 连续使用总时数 投入使用后的小时数τ-T
3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 6
8
12
16 0.77 0.81 0.84 0.86 0.32 0.18 0.15 0.12 0.10 0.09 0.07 0.06 0.06 0.05
0.78 0.81 0.84 0.86 0.88 0.90 0.36 0.21 0.17 0.14 0.12 0.10 0.09 0.08
0.80 0.83 0.86 0.88 0.89 0.91 0.92 0.93 0.94 0.95 0.40 0.25 0.20 0.17
0.83 0.86 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.98
表3—13 照明散热的负荷系数JLτ-T
房间类 型 连续使用总时数 投入使用后的小时数τ-T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 3
4
6
8
12
16 0.42 0.60 0.65 0.29 0.14 0.12 0.11 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03
0.42 0.61 0.66 0.70 0.33 0.18 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.05
0.43 0.61 0.67 0.71 0.74 0.78 0.39 0.24 0.20 0.18 0.16 0.14 0.12 0.10 0.09 0.08
0.45 0.63 0.68 0.72 0.75 0.78 0.81 0.83 0.45 0.28 0.24 0.21 0.19 0.16 0.14 0.12
0.49 0.66 0.71 0.74 0.77 0.80 0.83 0.85 0.87 0.89 0.90 0.91 0.51 0.34 0.29 0.26
0.55 0.72 0.76 0.79 0.81 0.84 0.86 0.88 0.89 0.91 0.92 0.93 0.94 0.95 0.95 0.96
表3—14 人体显热散热的负荷系数JPτ-T
房间类 型 连续使用总时数 投入使用后的小时数τ-T
3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 6
8
12
16 0.73 0.77 0.80 0.83 0.34 0.20 0.17 0.14 0.12 0.11 0.09 0.08 0.07 0.06
0.74 0.78 0.81 0.83 0.85 0.87 0.38 0.23 0.20 0.17 0.15 0.13 0.11 0.10
0.76 0.80 0.82 0.85 0.87 0.88 0.90 0.91 0.92 0.93 0.43 0.28 0.24 0.20
0.80 0.83 0.85 0.87 0.89 0.90 0.92 0.93 0.94 0.95 0.95 0.96 0.96 0.97
(d)食物散热量形成冷负荷
计算餐厅负荷时,食物散热量形成的显热冷负荷,可按每位就餐人员9W考虑。计算过程如下:
已确定餐厅人数为200人。则Q=9×200=1800W
(八)湿负荷计算
(a)人体散湿量
人体散湿量应同人体散热量一样考虑。计算过程如下:
查资料得,成年男子散热散湿量为:显热61W/人,潜热73W/人,109g/h•人;房间人数为20人。
Q=qnn′=109×20×0.77=0.00047kg/s
(b)水面散湿量
W=β(Pq•b-Pq)F kg/s
式中 Pq•b——相应于水表面温度下的饱和空气的水蒸汽分压力,Pa;
Pq——空气中水蒸汽分压力Pa;
F——蒸发水槽表面积,m2;
β——蒸发系数,kg/(N•s),β按下式确定:
β=(α+0.00363v)10-5;
B——标准大气压力,其值为101325Pa;
B′——当地实际大气压力,Pa;
α——周围空气温度为15~30℃,不同水温下的扩散系数,kg/(N•s);
v——水面上周围空气流速,m/s。
表3—11 不同水温下的扩散系数α
水温(℃) <30 40 50 60 70 80 90 100
α kg/(N•s) 0.0043 0.0058 0.0069 0.0077 0.0088 0.0096 0.0106 0.0125
(c)食品的散湿量
餐厅的食品的散湿量可按就餐总人数每人10g/h考虑。
以207餐厅为例,计算过程如下:
已确定餐厅人数为200人。则Q=10×200=2000g/h=0.00056kg/s
热负荷的计算和供热基本相同 只是采用了平均温度的计算方法

‘陆’ 请问地下室空调冷负荷怎么计算谢谢!

首先,关于冷负荷,一般地下室的埋在土里的部分在计算逐时负荷时不考虑这部分。因为从地表以下很浅的深度开始,土壤的温度就恒定保持在20度以下了,这对房间的耗热量计算是有利的,可以不计算。但是如果地下室底部是架空的要考虑传热,传热系数按照节能技术规范不小于1.0w/m2。

关于热负荷,是要计算的,因为土壤温度常年小于室内采暖设计温度(20,22度)。一种方法是把地下室的外墙自地面向下算起,按照地上建筑地面耗热的计算方法(即地面自外墙向内划分为几个区,每个区有不同的传热温差和传热系数,可以查表得到,参见陆耀庆的供热手册)。

还有一种方法,在ASHRAE手册看到的,根据土壤的传热系数、气象资料和地下室的维护结构材料查曲线。(这个我也没算通过,但是一些负荷计算软件有这个选项,输入建筑参数就可以了)。

其他的建筑内部散热量计算同地上无区别。

阅读全文

与冷负荷计算方法两种相关的资料

热点内容
清洗头皮屑的方法简单 浏览:208
java如何调用js中的eval方法 浏览:800
草缸戊二醛使用方法 浏览:126
社会研究方法参考书是谁的 浏览:106
幼儿园去除甲醛方法是什么 浏览:791
买苹果的正确方法图片 浏览:13
讲述模式对应的教学方法 浏览:169
如何写广告文案的方法 浏览:388
腌制咸鸭蛋最简单的方法视频 浏览:130
对苯醌的含量分析方法 浏览:437
训练宽背的方法 浏览:526
纠正孩子骨盆前倾的锻炼方法 浏览:317
急性大脑中血管梗塞最佳治疗方法 浏览:211
该用什么方法钓鲤鱼 浏览:497
失恋怎么解决方法 浏览:798
空气呼吸器的使用方法视频 浏览:208
手机出现竖道怎么简单方法能排除 浏览:124
碳水化合物分离和鉴定的常用方法 浏览:502
拔火罐方法及技巧视频 浏览:824
红酒杯好坏的测量方法 浏览:252