1. 二次函数公式,还有计算技巧
y=ax方+bx+c
a大于零开口向上
小于零时抛物线开口向下
顶点(-b/2a,4ac-b方/4a)
对称轴x=-b/2a
顶点式:y=a(x-h)方+k
(a不等于零)
两根式:y=a(x-x1)(x-x2)
(a不等于零)x1
x2
为抛物线与x轴交点横坐标
2. 高一二次函数解题技巧
1.数形结合
数形结合的方法,就是将数字与图形二者进行相互变换,不仅可以把问题变得更加简单,而且可以把抽象的问题变得更加具体,这种方法在数学的学习过程中经常用到. 通过对二次函数的定义以及性质进行学习,我们了解到它的图像是一个抛物线,并且它的图像还具有非常多的特殊性
例如,它具有对称性、单调性等等,我们在对二次函数求解的过程中,可以充分地利用它的图像所具有的这些性质,它不仅可以把复杂的二次函数变得更加的简单,而且可以把二次函数变得更加直观. 抛物线具有的对称性是一个非常重要的解题思路. 二次函数图像的对称轴一般与y轴平行或者重合;它的另一大特性是连续性,并且与其对应的方程最多只能够有两个实根,因此就会产生一个区间,这可以为我们的解题带来很多方便. 在解题的过程中还可以利用二次函数的单调性,这也是经常用到的方法.
2.代数推理
众所周知,二次函数的函数式是y = ax2 + bx + c,观察其函数式非常的简单,而与其对应的抛物线图像却比较容易发生变形,例如,在其中会有一般式、顶点式以及零点式等等,因此,在解决二次函数问题的过程中,其函数式会得到非常广泛的应用.
在二次函数的函数式y = ax2 + bx + c中,具有三个变量a,b,c,在确定这三个变量时一定要给出三个相互独立的条件,有一些时候将所给出的条件全部应用完成之后还不能够得出三个变量的值,这时我们就要使用逆向思维,看给出的条件中是否含有隐含条件,我们不能够被其中的假象迷惑;我们还应该学会利用二次函数与方程根之间具有的关系,写出它的顶点式,我们可以对二次函数进行假设,对其图像进行描绘;然后使用函数所具有的一些性质对其进行限制,并且在对顶点式进行运用的过程中要非常的灵活. 顶点式看着比较复杂,而其中最简单的就是它,在此过程中充分的利用顶点式,最后一定会找到答案.
3. 二次函数的解答技巧
一、理解二次函数的内涵及本质
.
二次函数
y=ax2
+
bx
+
c
(
a
≠
0
,
a
、
b
、
c
是常数)中含有两个变量
x
、
y
,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形
.
二、熟悉几个特殊型二次函数的图象及性质
.
1
、通过描点,观察
y=ax2
、
y=ax2
+
k
、
y=a
(
x
+
h
)
2
图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式
.
2
、理解图象的平移口诀“加上减下,加左减右”
.
y=ax2
→
y=a
(
x
+
h
)
2
+
k
“加上减下”是针对
k
而言的,“加左减右”是针对
h
而言的
.
总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移
.
3
、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;
4
、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数
a
、
b
、
c
、△以及由系数组成的代数式的符号等问题
.
三、要充分利用抛物线“顶点”的作用
.
1
、要能准确灵活地求出“顶点”
.
形如
y=a
(
x
+
h
)
2
+
K
→顶点(-
h,k
),对于其它形式的二次函数,我们可化为顶点式而求出顶点
.
2
、理解顶点、对称轴、函数最值三者的关系
.
若顶点为(-
h
,
k
),则对称轴为
x=
-
h
,
y
最大(小)
=k
;反之,若对称轴为
x=m
,
y
最值
=n
,则顶点为(
m
,
n
);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果
.
3
、利用顶点画草图
.
在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象
.
四、理解掌握抛物线与坐标轴交点的求法
.
一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标
.
如果方程无实数根,则说明抛物线与
x
轴无交点
.
从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与
x
轴的交点个数
.
五、灵活应用待定系数法求二次函数的解析式
.
用待定系数法求二次函数的解析式是我们求解析式时最常规有效的方法,求解析式时往往可选择多种方法,如能综合利用二次函数的图象与性质,灵活应用数形结合的思想,不仅可以简化计算,而且对进一步理解二次函数的本质及数与形的关系大有裨益
.
4. 数学关于解二次函数的所有方法
可以先假设与X轴的交点分别为(m,0),(n,0),定点为(o,p)
则可以得到y=a(x-m)(x-n),在把定点带入计算。
A(1,0)B(-1,0)C(2,-3)
则可以得到y=a(x-1)(x+1),把点C代入得a=-1,
所以二次函数为y=-1(x-1)(x+1),化简为y=-x²+1.
望采纳,谢谢。
如有疑问请+Q:461532926
写上你的名字
5. 关于二次函数解题有没有什么技巧,比如经常用的公式
二次函数的一般式为y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次。
x是自变量,y是x的函数
①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k
③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)
以上3种形式可进行如下转化:
①一般式和顶点式的关系
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交点式的关系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
当a>0时,函数在x= -b/2a处取得最小值4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.定义域:R 全体实数
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
6. 二次函数怎么学,有什么技巧
楼主你好,要想学好二次函数,首先把二次函数解析式的三种形式记住,还有图像的特点,最重要就是多做题,多总结。做题时要善于画草图。像一些求取值范围的这类的题有时不好算。但画图就容易看出来了
7. 数学的二次函数的解法技巧
1.
确定函数关系式有;待定系数法。
函数解析式有三种常见形式:
1)一般式:y=ax^2+bx+c(a≠0)
2)顶点式:y=a(x-h)^2+k(a≠0),
其中顶点为(h,k)
3)零点式:y=a(x-x1)(x-x2)(a≠0),
其中y=0时,方程的根为x1,x2。
2.利用二次函数知识解决简单实际问题时,注意多利用函数图象,数形结合解题。
二次函数(quadratic
function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,
二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式y=ax²+bx+c(且a≠0)的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
8. 二次函数的解题技巧有什么
01 二次函数解题技巧:二次函数有点难,求点坐标是关键。一求函数解析式,再求面积带线段。动点问题难解决,坐标垂线走在前。三角相似莫相忘,勾股方程解疑难。
二次函数(quadratic function)是一个二次多项式(或单项式),它的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数解题技巧:二次函数有点难,求点坐标是关键。一求函数解析式,再求面积带线段。动点问题难解决,坐标垂线走在前。三角相似莫相忘,勾股方程解疑难。
二次函数综合题,题型的变化比较多,要求的结果也非常多样,但是其核心都是围绕着点的坐标来进行,一般的情况是先由已知点的坐标,求出函数解析式,再由函数解析式去求未知点的坐标,和变化后相应图形的关键点的坐标。
知识要点
1、要理解函数的意义。
2、要记住函数的几个表达形式,注意区分。
3、一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)(增减值)等的差异性。
4、联系实际对函数图象的理解。
5、计算时,看图像时切记取值范围。
6、随图象理解数字的变化而变化。