1. 算子范数的定义
范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
中文名
范数
外文名
norm
应用学科
数学
适用领域范围
代数
本质
函数
快速
导航
算子范数空间范数矩阵范数
名词定义
范数
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。
注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。
半范数
假设
是域
上的矢量空间,V的半范数是一个函数
,
,满足:
(非负性)
(正值齐次性)
(三角不等式).
范数=半范数+额外性质
赋范线性空间
若
是数域上的线性空间,泛函
满足:
(1)正定性:
,且
;
(2)正齐次性:
;
(3)次可加性(三角不等式):
。
那么,
称为
上的一个范数。
如果线性空间上定义了范数,则称之为赋范线性空间。
当且仅当
是零矢量(正定性)时,
是零矢量;若拓扑矢量空间的拓扑可以被范数导出,那么这个拓扑矢量空间被称为赋范矢量空间。
内积、度量、拓扑和范数的关系
(1) 范数
度量
拓扑:
,因此赋范线性空间是度量空间;但是由度量不一定可以得到范数。
(2) 如果赋范线性空间作为(由其范数自然诱导度量
的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。
(3) 内积
范数:
;范数不一定可以推出内积;当范数满足平行四边形公式
时,这个范数一定可以诱导内积;完备的内积空间称为希尔伯特空间。
去翻翻泛函分析的书吧..这里讲很难讲清楚的
无论是范数还是算子范数,如果简单的理解成为代数结构上的模的话很有助于理解。
具体怎么算的,你可以看了书来想想,一般的话都是夹逼法计算算子范数,就是算子范数Tx小于等于a,大于等于a,从而知等于a这样的方法....
说的比较泛泛...
3. 向量的二范数的算子范数怎么求
1-范数:是指向量(矩阵)里面非零元素的个数。类似于求棋盘上两个点间的沿方格边缘的距离。||x||1=sum(abs(xi));2-范数(或Euclid范数):是指空间上两个向量矩阵的直线距离。类似于求棋盘上两点见的直线距离(无需只沿方格边缘)。||x||2=sqrt(sum(xi.^2));∞-范数(或最大值范数):顾名思义,求出向量矩阵中其中模最大的向量。||x||∞=max(abs(xi));PS.由于不能敲公式,所以就以伪代码的形式表明三种范数的算法,另外加以文字说明,希望楼主满意。相互学习,共同进步~
4. 有关泛函分析,范数
倒推回去即可
5. 什么是范数向量的范数公式是什么
向量范数
定义1.
设
,满足
1.
正定性:║x║≥0,║x║=0
iff
x=0
2.
齐次性:║cx║=│c│║x║,
3.
三角不等式:║x+y║≤║x║+║y║
则称Cn中定义了向量范数,║x║为向量x的范数.
可见向量范数是向量的一种具有特殊性质的实值函数.
常用向量范数有,令x=(
x1,x2,…,xn)T
1-范数:║x║1=│x1│+│x2│+…+│xn│
2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)^1/2
∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)
易得
║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞
定理1.Cn中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使
m║x║α≤║x║β≤M║x║
可根据范数的连续性来证明它.由定理1可得
定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则
║x(k)-x║→0(k→∞)
iff
xj(k)-xj→0,j=1,2,…,n(k→
∞)
其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k)
→x(k→∞),或
.
三、
矩阵范数
定义2.
设
,满足
1.
正定性:║X║≥0,║X║=0
iff
X=0
2.
齐次性:║cX║=│c│║X║,
3.
三角不等式:║X+Y║≤║X║+║Y║
4.
相容性:
║XY║≤║X║║Y║
则称Cn×n中定义了矩阵范数,║X║为矩阵X的范数.
注意,
矩阵X可视为n2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量
序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.更有矩
阵向量乘使我们定义矩阵范数向量范数的相容性:
║Ax║≤║A║║x║
所谓由向量范数诱导出的矩阵范数与该向量范数就是相容的.
定理3.
设A是n×n矩阵,║?║是n维向量范数则
║A║=max{║Ax║:║x║=1}=
max{║Ax║/║x║:
x≠0}
是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数,它们具有相容性
或者说是相容的.
单位矩阵的算子范数为1
可以证明任一种矩阵范数总有与之相容的向量范数.例如定义:
║x║=║X║,X=(xx…x)
常用的三种向量范数诱导出的矩阵范数是
1-范数:║A║1=
max{║Ax║1:║x║1=1}=
2-范数:║A║2=max{║Ax║2:║x║2=1}=
,λ1是AHA的
最大特征值.
∞-范数:║A║∞=max{║Ax║∞:║x║∞=1}=
此外还有Frobenius范数:
.它与向量2-范数相容.但非向量范数诱导出的矩阵范数.
四、
矩阵谱半径
定义3.设A是n×n矩阵,λi是其特征值,i=1,2,…,n.称
为A的谱半径.
谱半径是矩阵的函数,但非矩阵范数.对任一矩阵范数有如下关系:
ρ(A)≤║A║
因为任一特征对λ,x,Ax=λx,令X=(xx…x),可得AX=λX.两边取范数,由矩阵范数的
相容性和齐次性就导出结果.
定理3.矩阵序列I,A,A2,…Ak,…收敛于零的充分必要条件是ρ(A)
6. 矩阵的范数怎么计算
矩阵的范数计算方法:计算矩阵的范数公式:║A║1=max。矩阵范数(matrixnorm)是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。
7. 泛函分析有界线性算子的各种收敛定义
比如X和Y是Banach空间,M和M_n:X-->Y是线性算子,n=1,2,……
如果对于任何x in X,y in Y^*(Y的对偶空间),有<M_n x,y>收敛到<Mx,y>(这个是在实数或者复数域内),那么称为M_n弱收敛到M。
如果对于任何x in X,有M_n x收敛到Mx(按X中的范数),那么称为M_n强收敛到M。
所有的M_n和M都是L(X,Y)中的元素,而L(X,Y)本身也有范数,如果在这个范数下,M_n收敛到M,那么称为依范数收敛。
稍注意一下,以上三种收敛都是指 ‘算子’ 的收敛。(如果只是给了一个Banach空间的话,其中元素的收敛只有强弱两种)
对于这三种收敛,依范数收敛可以推出强收敛,强收敛可以推出弱收敛。一般情况下都不能反过来。
8. 什么是泛函分析
函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。
巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。
泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,
几何学,
代数学的观点来研究无限维向量空间上的函数,
算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。
泛函分析所研究的一个重要对象是巴拿赫空间和
希尔伯特空间
上的连续线性算子。这类算子可以导出C*代数和其他算子代数的基本概念。
1. 希尔伯特空间
希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。
2. 巴拿赫空间
一般的巴拿赫空间比较复杂,例如没有通用的办法构造其上的一组基。
对于每个实数p,如果p ≥ 1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)
在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。
微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。
佐恩引理(Zorn's Leema)。此外,泛函分析中大部分重要定理都构建与罕-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布伦素理想定理(Boolean prime ideal theorem)的一个形式。
数学物理
,从更广义的角度来看,如按照Israel Gelfand所述,其包含表示论的大部分类型的问题。
阿达玛发表的着作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。
这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。现代数学的发展却是要求建立两个任意集合之间的某种对应关系。
这里我们先介绍一下算子的概念。算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。
研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。
概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。
9. 什么是泛函分析它的四个基本定理是什么
泛函分析,它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。
泛函分析的基本定理是罕-巴拿赫定理、选择公理(Axiom of Choice)弱于布伦素理想定理(Boolean prime ideal theorem)、佐恩引理、压缩映射定理。
(9)泛函分析算子范数的计算方法扩展阅读:
泛函分析是20世纪30年代形成的。从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。半个多世纪来,一方面它不断以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间(也称拓扑向量空间)理论、广义函数论等等。
另一方面,它也强有力地推动着其他不少分析学科的发展。它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。
10. 你认为泛函分析讲了什么,与高代,数分有什么关系
泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。
泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
[编辑本段]赋范线性空间
从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Fréchet空间和拓扑向量空间等没有定义范数的空间。
泛函分析所研究的一个重要对象是巴拿赫空间和希尔伯特空间上的连续线性算子。这类算子可以导出C*代数和其他算子代数的基本概念。
1. 希尔伯特空间
希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。
2. 巴拿赫空间
一般的巴拿赫空间比较复杂,例如没有通用的办法构造其上的一组基。
对于每个实数p,如果p ≥ 1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)
在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。
微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。
[编辑本段]主要结果和定理
泛函分析的主要定理包括:
1. 一致有界定理(亦称共鸣定理),该定理描述一族有界算子的性质。
2. 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。
3. 罕-巴拿赫定理(Hahn-Banach Theorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。
4. 开映射定理和闭图像定理。
[编辑本段]泛函分析与选择公理
泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn's Leema)。此外,泛函分析中大部分重要定理都构建与罕-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布伦素理想定理(Boolean prime ideal theorem)的一个形式。
[编辑本段]泛函分析的研究现状
泛函分析目前包括以下分支:
1. 软分析(soft analysis),其目标是将数学分析用拓扑群、拓扑环和拓扑向量空间的语言表述。
2. 巴拿赫空间的几何结构,以Jean Bourgain的一系列工作为代表。
3. 非交换几何,此方向的主要贡献者包括Alain Connes,其部分工作是以George Mackey的遍历论中的结果为基础的。
4. 与量子力学相关的理论,狭义上被称为数学物理,从更广义的角度来看,如按照Israel Gelfand所述,其包含表示论的大部分类型的问题。
[编辑本段]泛函分析的产生
十九世纪以来,数学的发展进入了一个新的阶段。这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。
本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的着作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。
这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。现代数学的发展却是要求建立两个任意集合之间的某种对应关系。
这里我们先介绍一下算子的概念。算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。
研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。
[编辑本段]泛函分析的特点和内容
泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。
泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多自由度力学系统的例子。一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的量子场理论就属于无穷自由度系统。
正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。
泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。
半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。
泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。