‘壹’ 频率分布直方图中位数众数平均数怎么算
1、众数:在频率分布直方图中,用面积最大的矩形的横轴中点对应的数来估计众数(最高矩形的横坐标中点)。
2、平均数:在频率分布直方图中,利用每个小矩形的面积乘以小矩形底边中点的横坐标之和来估计平均数。
其他介绍
用样本的数字特征估计总体的数字特征
1、众数:在一组数据中,出现次数最多的数称为众数。
2、中位数:在按大小顺序排列的一组数据中,当一组数有奇数个时,居于中间的数称为中位数,当一组数据有偶数个是,居于中间两数的平均数称为中位数。
3、平均数:是指一组数据的算术平均数。
‘贰’ 数学中频率分布直方图频率怎么算
频率=频数/总量
例如:下图中从图上可以看看出,52的有2个人;57的有6个人;62的有8个人;67的有12个人;72的有8个人;77的有6个人,82的有4个人;87的有3个人;92的有1个人;97的有1个人。
所以,求52的频率=2/(2+6+8+12+8+6+4+3+1+1)
82的频率=4/(2+6+8+12+8+6+4+3+1+1)
(2)频数分布计算方法扩展阅读
频率的性质
当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件A的概率,这种“频率稳定性”也就是通常所说的统计规律性。
频率有如下性质:
(1)非负性:0小于等于fn(A)小于等于1;
(2)规范性:fn(Ω)=1 (注:Ω表示样本空间);
(3)可加性。
‘叁’ 如何计算频数分布直方图的平均值
一般会取组中值进行计算。例如:数据在20≤x<30的个数有5个,在例子中表示有5个25,然后其他分组的也一样,最后用这些数据的总和除以这些数据的总数就得到这组数据的平均数。
‘肆’ 在EXCEL中怎么用公示计算向上(下)累积频数和累积频率并绘制累积频数分布图
以表3-11-乙城市家庭对住房状况评价的评述分布表为例
1、计算向上累积户数,在第一行用公式“=SUM(B3:B$3)”,并且双击单元格右下脚则可得到图中的结果:
‘伍’ 频数分布直方图怎么估计平均数 中位数和众数
众数为65,中位数为65;平均数为67.
试题分析:这是一道从频率分布直方图得到样本数据的数字特征的统计题目,众数是指出现次数最多的数,体现在频率分布直方图中,是指高度最高的小矩形的宽的中点的横坐标,中位数是指从左往右小矩形的面积之和为
处的横坐标,而平均数则是由各小矩形的宽的中点的横坐标乘以相应小矩形的面积,然后求和得到,故本题按照这些方法进行计算即可得到众数、中位数、平均数的值.试题解析:由频率分布直方图可知,众数为65,由10×0.03+5×0.04=0.5,所以面积相等的分界线为65,即中位数为65,平均数为55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67.
‘陆’ 样本频率分布怎么计算
由图及频率分布直方图的意义要吃紧4×(0.02+0.03+0.03+0.08+x)=1,解得x=0.09
∴样本数据落在[6,14)内的频数为1000×4×(0.08+0.09)=680.
故答案为:680.
‘柒’ 频数如何求
频数是一组数列当中,某个元素出现的次数,就叫做频数。简单的可以直接数出来,复杂的可以根据已知条件求出。
例如,在20个球里任意选出10个,出现了6次黄球,6就是黄球的频数。6/20就是黄球的频率,也就是用频数/总体。
拓展资料:
频数(Frequency),又称“次数”。指变量值中代表某种特征的数(标志值)出现的次数。按分组依次排列的频数构成频数数列,用来说明各组标志值对全体标志值所起作用的强度。各组频数的总和等于总体的全部单位数。频数的表示方法,既可以用表的形式,也可以用图形的形式。
如有一组测量数据,数据的总个数N=148最小的测量值
=17.6%。
一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则是每个小组的频数与数据总数的比值。在变量分配数列中,频数(频率)表明对应组标志值的作用程度。频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
1、频数分布
我们把各个类别及其相应的频数全部列出来就是频数分布或称次数分布。将频数分布用表格的形式表现出来就是频数分布表。调查数据经分类整理后形成频数分布表。
2、累积频数(Cumulative frequencies)
累积频数就是将各类别的频数逐级累加起来。其方法有两种:
一是从类别顺序的开始一方向类别顺序的最后一方累加频数(定距数据和定比数据则是从变量值小的一方向变量值大的一方累加频数),称为向上累积;
二是从类别顺序的最后一方向类别顺序的开始一方累加频数(定距数据和定比数据则是从变量值大的一方向变量值小的一方累加频数),称为向下累积。通过累积频数,可以很容易看出某一类别(或数值)以下及某一类别(或数值)以上的频数之和。
‘捌’ 频数分布表的组距怎么求
组距=R(最大值-最小值)÷组数
组距是指每组的最高数值与最低数值之间的距离。在分组整理统计量数时,组的大小可因系列内量数的全距及所要划分的组数的不同而有所不同。每一组的最小限度叫做下限,最大限度叫做上限。下限和上限之间的距离,即为组距。
例如:
比如R=30,组数=6,则组距=5,但实际上当组距=5时,30/5=6,应该分6+1=7组。
(8)频数分布计算方法扩展阅读:
组距分组的原则
采用组距分组时,需要遵循“不重不漏”的原则。“不重”是指一项数据只能分在其中的某一组,不能在其他组中重复出现;“不漏”是指组别能够穷尽,即在所分的全部组别中每项数据都能分在其中的某一组,不能遗漏。
为解决“不重”的问题,统计分组时习惯上规定“上组限不在内”,即当相邻两组的上下限重叠时,恰好等于某一组上限的变量值不算在本组内,而计算在下一组内。例如,在表的分组中,120这一数值不计算在“115-120”这一组内,而计算在“120-125”组中,其余类推。当然,对于离散变量,可以采用相邻两组组限间断的办法解决“不重”的问题。
而对于连续变量,可以采取相邻两组组限重叠的方法,根据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所要求的精度具体确定。例如,对零件尺寸可以分组为10-11.99、12-13.99、14-15.99,等等。
在组距分组中,如果全部数据中的最大值和最小值与其他数据相差悬殊,为避免出现空白组(即没有变量值的组)或个别极端值被漏掉,第一组和最后一组可以采取“××以下”及“××以上”这样的开口组。开口组通常以相邻组的组距作为其组距。
参考资料来源:网络-组距
‘玖’ 求频率分布直方图方差公式
直方图上有每个组的均值和每个组的频数。
假设某个组处于10-20,频数为5,那么这个组可以看成是5个15,依次类推,能获得一堆数据,算这堆数据的方差即可。
方差=(中点-平均数)×频率的和,其中频率=各长方形面积。
频率分布直方图 纵轴表示频数/组距,横轴表示各组组距,若求某一组的频率,就用纵轴的频率/组距*横轴的组距,即得该组频率。
运用:
频率分布直方图能清楚显示各组频数分布情况又易于显示各组之间频数的差别。它主要是为了将我们获取的数据直观、形象地表示出来,让我们能够更好了解数据的分布情况,因此其中组距、组数起关键作用。分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征。当数据在100以内时,一般分5~12组为宜。
以上内容参考:网络-频率分布直方图
‘拾’ 根据频率分布直方图怎样求平均数,众数,中位数
一、方法:
1、众 数:频率分布直方图中最高矩形的底边中点的横坐标 。
2、算术平均数:频率分布直方图每组数值的中间值乘以频数相加。
3、加权平均数:加权平均数就是所有的频率乘以数值后的和相加。
4、中位数:把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标。
二、(10)频数分布计算方法扩展阅读:
1、频率直方图(frequency histogram)亦称频率分布直方图。统计学中表示频率分布的图形。在直角坐标系中,用横轴表示随机变量的取值,横轴上的每个小区间对应一个组的组距,作为小矩形的底边;纵轴表示频率与组距的比值,并用它作小矩形的高,以这种小矩形构成的一组图称为频率直方图。
2、图形: