㈠ 滤波增强
滤波是指对频率特征的一种筛选技术。影像滤波处理是对影像中某些空间频率特征信息增强或抑制。例如增强高频抑制低频信息即是突出边缘、线条、纹理、细节; 增强低频抑制高频信息是去掉细节,保留影像中的主干、粗结构。影像的滤波增强实质就是增强影像的某些空间频率特征,来改善目标与其邻域间像元的对比度关系。
地学工作者往往对遥感影像中的地物边界、纹理、地面形迹等信息感兴趣,因此需要增强遥感影像中的这些信息。影像中的这些信息在空间位置上具有一定的延伸方向、延伸距离、宽度以及反差等特点,这些特点可以用一定的物理模式来描述,例如具有长距离( 数十千米) 、宽线条的形迹呈低频率特征; 对于细小的边界、纹理、断裂等长度在数百米内的窄线条的形迹呈高频特征; 介于两者之间的呈中频特征。因此,根据地学判读的需要,可以分别增强高频、中频和低频特征 ( 图 4-11) 。实现低频增强的称为低通滤波 ( 图4-12,图 4-13) ; 实现高频增强的称为高通滤波 ( 图 4-14) ; 增强中间频段的称为带通滤波; 此外还可增强影像的某些方向的形迹特征,称为定向滤波 ( 图 4-15) 。例如,山脉之间的距离以数十千米计算,其形迹具有较低的空间频率,应采用低通滤波,即将具有高频率和中等频率形迹的曲线滤去,只通过低频率的形迹曲线构成图像,突出表示山脉的形迹; 一般背斜、向斜有着中等的空间频率,波长以千米计算,采用中通滤波; 而节理、裂隙以及小型地质构造具有较高的频率,波长以几十米、几百米计算,采用高通滤波。
图 4-11 ENVI 软件滤波增强处理对话框及运算菜单
图 4-12 某地 TM1 原始影像
图 4-13 ENVI 软件低通滤波处理的影像
图 4-14 ENVI 软件高通滤波处理的影像
图 4-15 315°方向滤波处理的影像
滤波增强技术有空间域滤波和频率域滤波两种。空间域滤波是在影像的空间变量内进行局部运算,使用空间二维卷积方法。频率域滤波使用傅氏分析等方法,通过修改原影像的傅氏变换式实现滤波。这里讨论的滤波增强主要解决图像的平滑和锐化处理问题。地物的边界及各种线性形迹,通常都表现为一定的空间分布频率,因此可以通过空间域或频率域的滤波对它们进行增强。
( 一) 图像平滑处理
图像中出现某些亮度变化过大的区域,或出现不该有的亮点 ( “噪声”) 时,采用平滑方法可以减小变化,使亮度平缓或去掉不必要 “噪声”点。它实际上是使图像中高频成分消退,即平滑图像的细节,降低其反差,保存低频成分,在频域中称为低通滤波。图像平滑处理可通过邻域平均法实现,即利用图像点 ( x,y) 及其邻域若干个像素的灰度平均值来代替点 ( x,y) 的灰度值,结果是对亮度突变的点产生了 “平滑”效果。空间域中的图像平滑处理多采用模板窗口对原始图像进行卷积运算,根据卷积运算的方式可分为滑动平均法、中值滤波等方法。
1. 滑动平均法
平滑滤波的输出图像中像元 ( x,y) 的 DN 值等于原始图像中以目标像元 ( x,y) 为中心的模板窗口内像元的平均 DN 值。图像平滑的效果取决于模板窗口的大小。平滑可抑制噪声,但也会造成边缘信息损失而使图像模糊。
2. 中值滤波
平滑滤波的输出图像中像元 ( x,y) 的 DN 值等于原始图像中以目标像元 ( x,y) 为中心的模板窗口内所有像元的中间 DN 值。中值滤波是一种非线性变换。其优势在于可在平滑的基础上较大程度地防止边缘模糊。
图像平滑的主要目的是消除图像中的随机噪声、孤立噪声等影响数据处理与分析的无用数据,以取得便于后续处理与专题信息提取的可靠数据。当然,噪声的判断与消除亦依赖于数据处理人员的地学知识与解译经验,同时亦取决于数据与认知模式,不能简单地一概而论。
( 二) 图像锐化处理
图像锐化指增强图像中的高频信息,以削弱背景、突出光密度突变的高频成分 ( 线条或边缘) ,起到增强边缘和细微构造的作用,有助于隐伏构造的显示。空间域中的图像锐化处理多利用原始图像中目标像元与邻近区域像元 DN 值之间的变化率来衡量,根据运算的方式可分为微分法、空间域定向滤波等方法。
1. 微分法
对于离散的数字图像而言,其 DN 值在相邻像元间的变化率包括 8 个方向 ( 水平、垂直、对角线方向) ,微分法即采用各方向上相邻像元之间的 DN 值差值来作为方向导数的近似,可分为一次微分法和二次微分法。
一次微分法反映了相邻像元的亮度变化率,即图像中如果存在边缘,如湖泊、河流的边界,山脉和道路等,则边缘处有较大的梯度值。对于亮度值较平滑的部分,亮度梯度值较小。因此,找到梯度较大的位置,也就找到边缘,然后再用不同的梯度计算值代替边缘处像元的值,也就突出了边缘,实现了图像的锐化。通常有罗伯特梯度和索伯尔梯度方法。
拉普拉斯算法为二次微分法,与一次微分法的区别在于它不检测均匀的图像亮度变化,而是检测变化率的变化率,相当于二阶微分,计算出的图像更加突出亮度值突变的位置。实际中,亦可由原图像减去拉普拉斯模板运算结果 ( 或其某个倍数) 而得到新的图像,从而使原图像作为背景保留下来,同时可加大边缘特征的对比度。
2. 空间域定向滤波
空间域定向滤波又称为图像的卷积运算,亦即通过一定尺寸的方向模板对图像进行卷积运算,并以卷积值代替各像元点的灰度值 ( DN 值) 。
方向模板 ( 卷积核) 是一个各元素大小按照一定的规律取值,并因而对于某一方向灰度变化最敏感的数字矩阵。方向模板增强的是元素代数和取值最大的方向 ( 最大响应方向) 上的空间特征信息。方向模板与图像的卷积运算是指模板的中心沿图像像元依次移动,在每一位置上将模板中各个元素值与图像上对应像元 DN 值相乘后的累加和作为模板中心点对应像元的卷积输出值。
方向模板分为零模板与非零模板,零模板其所有元素的代数和为零,非零模板中所有元素的代数和不为零 ( 图 4-16) 。
图 4-16 方向模板
㈡ 索伯尔梯度的计算方法
Sobel边缘算子
对数字图像的每一个像素f(i,j),考察它的上、下、左、右邻域灰度的加权值,把各方向上(0度、45度、90度、135度)的灰度值加权之和作为输出,可以达到提取图像边缘的效果。
即 g(i,j) = fxr + fyr, 其中
fxr = f(i-1,j-1)+2*f(i-1,j)+f(i-1,j+1)-f(i+1,j-1)-2*f(i+1,j)-f(i+1,j+1)
fyr = f(i-1,j-1)+2*f(i,j-1)+f(i+1,j-1)-f(i-1,j+1)-2*f(i,j+1)-f(i+1,j+1)
㈢ 罗伯特梯度和索伯尔梯度计算有什么区别
罗伯特算法更突出边远,索伯尔算法更考虑领域点的关系。
㈣ 请问如何用SOBEL算子计算一个像素点的梯度
你先将素子的第一块的轴梯度和最后一块的轴梯度用KLNS公式写成PC不等式,再按F=Q的平方加上其他素点,就可以了。
不屈不挠看到你问题的,谢谢给分。
㈤ sobel算子计算梯度
Sobel算子可以用来检测0度、90度、45度和135度的边缘 例如对角的有45度和135度 45度的算子是[0 1 2,-1 0 1,-2 -1 0] 135度的算子是[-2 -1 0 ,-1 0 1,0 1 2] 注意有时候会求得负值 建议采取绝对值或者去掉负值部分!
㈥ 索伯尔梯度算法的结果赋给中间值吗
摘要 一般来说,用来表示微分的最常用的算子是索贝尔(Sobel)算子,它可以实现任意阶导数和混合偏导数(例如: ∂2/∂x∂y)。
㈦ 梯度的计算公式是什么
梯度的计算公式:gra=aₓ(∂u/∂x)+aᵧ(∂u/∂y)+az(∂u/∂z)
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
(7)索伯尔梯度计算方法扩展阅读:
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅可比矩阵的特殊情况。
在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。
㈧ 梯度grad计算公式
梯度grad计算公式:在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一点P(x,y)∈D,都可以定出一个向量(δf/x)*i+(δf/y)*j,这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作gradf(x,y)。类似的对三元函数也可以定义一个:(δf/x)*i+(δf/y)*j+(δf/z)*k记为grad[f(x,y,z)]。
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
㈨ 函数的偏导数,方向导数和梯度怎么计算
1、当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。
方向导数和梯度计算方法如下图:
(9)索伯尔梯度计算方法扩展阅读:
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
f"xy与f"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f"xy 与 f"yx 都连续时,求导的结果与先后次序无关。
㈩ 现利用遥感影像两张进行制图,请给出详细设计步骤! 谢谢
一、资料的收集与分析 遥感制图所需的资料范围较广,一般需要收集如下资料
1、编制地区的普通地图 、 (1)比例尺最好与成图比例尺一致或稍大于成图比例尺 (2)选用面积变形较小的地图投影
2、遥感资料 后几年的影像 在选择遥感图像时,要遵循以下几个原则:
(1)空间分辨率及制图比例尺的选择 空间分辨率指像素 代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元。 空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元的地面范围的大小 由于遥感制图是利用遥感图像来提取专题制图信息的,因此在选择遥感图像空间分辨率时要考虑以 下两点要素:一是判读目标的最小尺寸,二是地图成图比例尺。遥感图像的空间分辨率与地图比例尺有 密切关系:空间分辨率越高图像可放大的倍数越大,地图的成图比例尺也越大。 遥感图像的比例尺应与成图比例尺一致或象片比例尺稍大于成图比例尺,这样可以避免成图比例尺 大尺度变换的繁琐技术问题。但对于专题要素的判读、分类、描绘来说,往往要选择大于地图比例尺的 象片为宜。
(2)波谱分辨率与波段的选择 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔 波谱分辨率,是由传感器所使用的波段数目,也就是选择的通道数,以及波段的波长和宽度所决定。各 遥感器波普分辨率在设计时, 都是有针对性的, 多波段的传感器提供了空间环境不同的信息。 TM 为例: 以 TM1 蓝波段:对叶绿素和夜色素浓度敏感,用于区分土壤与植被、落叶林与针叶林、近海水域制图。 TM2 绿波段:对无病害植物叶绿素反射敏感 TM3 红波段:对叶绿素吸收敏感,用于区分植物种类。 TM4 近红外波段:对无病害植物近红外反射敏感,用于生物量测定及水域判别。 TM5 中红外波段:对植物含水量和云的不同反射敏感,可判断含水量和雪、云。 TM6 远红外波段:作温度图,植物热强度测量 TM 图象的性质 波段 1 2 3 4 5 6 7 光谱范围 (微米) 0.45—0.52 0.52—0.60 0.63—0.69 0.76—0.90 1.55—1.75 10.4—12.5 2.08—2.35 光谱性质 蓝 绿 红 近红外 中(近)红外 热(中)红外 中红外 地面分辨 率(米) 30 30 30 30 30 120 30 主 要 应 用 地壤与植被分类 健康植物的绿色反射率 探测不同植物的叶绿素吸收 生物量测量,水体制图 植物湿度测量,区分云与雪 植物热强度测量,其它热制图 水热法制图,地质采矿 包括航空象片、卫星象片及它们的底片和磁带、航空象片镶辑图、若为动态监测还需要前
(3)时间分辨率与时相的选择 遥感图像是某一瞬间地面实况的记录,而地理现象是变化、发展的。因此,在一系列按时间序列成像的 遥感图像 多时相遥感图像中,必然存在着最能揭示地理现象本质的“最佳时相”图像 把传感器对同一目标进行重复探测时, 相邻两次探测的时间间隔称为遥感图像的时间分辨率。 Landsat 如 1、2、3 的图像最高时间分辨率为 18 天,Landsat4、5、7 为 16 天,SPOT-4 为 26 天,而静止气象卫星的 时间分辨率仅为半小时。 遥感图像的时间分辨率对动态监测尤为重要。如:天气预报、灾害监测等需要短周期的时间分辨率,因 此常以“小时”为单位。植物、作物的长势监测、估产等需要用“旬”或“日”为单位。 显然只有气象卫星的图像信息才能满足这种要求;研究植被的季相节律、农作物的长势,目前以选择 landsat-TM 或 SPOT 遥感信息为宜。
3、其他资料 土地现状图、土地利用报告 、编图地区的统计资料、政府文件、地方志等
二、确立专题要素的分类系统
三、遥感图像处理
1、遥感图像处理方法的选择 、
(1)光学处理法 常用的方法有:假彩色合成(加色法、减色法)、等密度分割、图像相关掩膜。
(2)数字图像校正 方法:辐射校正、几何校正
(3)数字图像增强的方法:
A. 对比度变换
B.空间滤波:是指在图像空间或空间频率对输入图像应用若干滤波函数而获得改进的输出图像的技术。 空间滤波 常用的空间滤波的方法有:平滑和锐化。 :平滑和锐化 平滑:图像中出现某些亮度变化过大的区域,或出现不该有的亮点(“噪声”)时,采用平滑的方法可以减小变化, 平滑 使亮度平缓或去掉不必要的“噪声”点。具体方法有:均值平滑、中值滤波 均值平滑、 均值平滑 锐化:为了突出图像的边缘、线状目标或某些亮度变化率大的部分,可采用锐化方法。常用的几种方法:罗伯特 锐化 梯度、索伯尔梯度、拉普拉斯算法、定向检测
C.彩色变换 彩色变换就是将黑白图像转换成彩色图像的方法。主用的方法有单波段彩色变换、多波段彩色变换、 彩色变换: 彩色变换 HLS 变换等。
D.图像运算
E.多光谱变换 多光谱变换: 多光谱变换 两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息 或去掉某些不必要信息的目的。方法:差值运算、比值运算 多光谱变换就是指用某种变换把信息集中于较少(一般为 3 个)波段内。常用的方法有:主成分分 主成分分 变换) 缨帽变换( 、缨帽变换 变换) 、沃尔什—哈达玛变换、傅立叶变换、植被指数变换、斜变 析(K-L 变换) 缨帽变换(K-T 变换) 、 换、余弦变换等等。 主成分分析( 变换) 主成分分析(K-L 变换)的主要特性有二: a.能够把原来多个波段中的有用信息尽量集中到数目尽可能少的新的组分图像中。 b.还能够使新的组分图像中的组分之间互不相关,也就是说各个组分包含的信息内容是不重叠的。 K-L 变换的缺点 的缺点是不能排除无用以至有碍的噪声和干扰因素。 的缺点 缨帽变换( 变换) :它是 Kauth 和 Thomas(1976 年)通过分析 MSS 图像反映农作物或植被生长过程的数据结 缨帽变换(K-T 变换) 构后,提出的正交线性变换。 K-T 变换的特点:a.能够把原来多个波段中的有用信息压缩到较少的新的波段内。 b.要求新波段正交或近似正交。 c.分离或削弱无用的干扰因素。 (4)多源信息复合 )
四、遥感图像的判读
1、遥感图像目视判读 遥感图像的判读标志:
遥感图像的判读标志:是指图像上反映出的地物和现象的图像特征,是以深浅不同的黑白色调(灰阶) 或不同的色彩构成的各种各样图形现象出来的。 遥感图像的判读标志可概括为:颜色、形状、空间位置 :颜色、形状、 颜色——色调、 颜色、 颜色——色调、 颜色、阴影 ——色调 形状——形状、纹理、 大小 、 形状 、 位置——位置、图型、相关布局 位置
2、目视解译的方法
(1)直接判读法(2)对比分析法 (3)信息复合法(4)综合推理法(5)地理相关分析法 (1)直接判读法:是根据遥感影像目视判读直接标志,直接确定目标地物属性与范围的一种方法。 直接判读法 例如,在可见光黑白像片上,水体对光线的吸收率强,反射率低,水体呈现灰黑到黑色,根据色调可以从影像 上直接判读出水体,根据水体的形状则可以直接分辨出水体是河流,或者是湖泊。在 MSS4、5、7 三波段假彩色影 像上,植被颜色为红色,根据地物颜色色调,可以直接区别植物与背景。 (2)对比分析法 此方法包括同类地物对比分析法、空间对比分析法和时相动态对比法。 A.同类地物对比分析法 同类地物对比分析法是在同一景遥感影像上,由已知地物推出未知目标地物的方法。 同类地物对比分析法 B.空间对比分析法 空间对比分析法是根据待判读区域的特点,选择另一个熟悉的与遥感图像区域特征类似的影像,将两个影像相互 空间对比分析法 对比分析,由已知影像为依据判读未知影像的一种方法。 C.时相动态对比法,是利用同一地区不同时间成像的遥感影像加以对比分析,了解同一目标地物动态变化的一种解 .时相动态对比法 译方法。 (3)信息复合法:利用透明专题图或者透明地形图与遥感图像重合,根据专题图或者地形图提供的多种辅助信息, 信息复合法 识别遥感图像上目标地物的方法。 (4)综合推理法:综合考虑遥感图像多种解译特征,结合生活常识,分析、推断某种目标地物的方法。 综合推理法 (5)地理相关分析法:根据地理环境中各种地理要素之间的相互依存,相互制约的关系,借助专业知识,分析推断 地理相关分析法 某种地理要素性质、类型、状况与分布的方法。
3、目视解译的基本步骤 (1)准备工作 •选择合适波段与恰当时相的遥感影像 •相关专题地图的准备 •工具材料准备 •熟悉地理概况 •确定专题分类系统 (2)室内初步解译与判读区的野外考察 室内建立初步判读标志 •初步解译的主要任务是掌握解译区域特点,确立典型解译样区,建立目视解译标志,探索解译方法,为全面解译 奠定基础。 •在室内初步解译的工作重点是建立影像解译标准,为了保证解译标志的正确性和可靠性,必须进行解译区的野外 调查。野外调查之前,需要制定野外调查方案与调查路线。 野外考察验正判读标志 在野外调查中,为了建立研究区的判读标志,必须做大量认真细致的工作,填写各种地物的判读标志登记表, 以作为建立地区性的判读标志的依据。在此基础上,制订出影像判读的专题分类系统,根据目标地物与影像特征之 间的关系,通过影像反复判读和野外对比检验,建立遥感影像判读标志。 (3)室内详细判读 在详细判读过程中,要及时将解译中出现的疑难点、边界不清楚的地方和有待验证的问题详细记录下来,留待野 外验证与补判阶段解决。 (4)野外验证与补判 野外验证指再次到遥感影像判读区去实地核实解译的结果。主要内容包括两方面: •检验专题解译中图斑的内容是否正确。 •验证图斑界线是否定位准确,并根据野外实际考察情况修正目标地物的分布界线。 (5)目视解译成果的转绘与制图 遥感图像目视判读成果,一般以专题图或遥感影像图的形式表现出来。
五、遥感图像计算机解译
图像分类方法 监督分类
1.(1) 最小距离法 最小距离法(minimum distance classifier) •以特征空间中的距离作为像素分类的依据。 •在遥感图象上对每一类别选取一个具有代表意义的统计特征量;计算待分像元与已知类别之间的距离,将其归 属于距离最小的一类。 •最小距离分类法原理简单,分类精度不很高,但计算速度快,它可以在快速浏览分类概况中使用。
(2) 分级切割分类法 分级切割分类法(multi-level slice classifier) 多级切割法(multi-level slice classifier)是根据设定在各轴上的值域分割多维特征空间的分类方法。
(3) 特征曲线窗口法 •特征曲线窗口法分类的依据是:相同的地物在相同的地域环境及成像条件下,其特征曲线是相同或相近的,而不 同地物的特征曲线差别明显。 •特征曲线窗口法分类的效果取决于特征参数的选择和窗口大小。各特征参数窗口大小的选择可以不同,它要根据 地物在各特征参数空间里的分布情况而定。
(4) 最大似然法 最大似然法(maximum likelihood classifier) •地物图象可以以其光谱特征向量 X 作为亮度在光谱特征空间中找到一个相应的特征点,来自于同类地物的各种特 征点在特征空间中将形成一种属于某种概率分布的集群。 • 判别某一特征点类属的合理途径是对其落进不同类别集群中的条件概率进行比较, 相应于条件概率大的那个类别, 应是该特征点的归属。
2、监督分类步骤
(1)选择有代表性的训练场,确定各类地物的范围界线。
(2)对各类地物光谱值统计,提取各地物的数值特征。
(3)确定分类判别函数:最小距离法、马氏距离法等。
(4)分类参数、阈值的确定;各类地物像元数值的分布都围绕一个中心特征值,散布在空间的一定范围,因此需要 给出各类地物类型阈值,限定分布范围,构成分类器。
(5)分类:利用分类器分类。
(6)检验:对初步分类结果精度进行检验(分类精度、面积精度、位置精度等) 对分类器进行调整。
(7)待分类影象分类。
(8)分类结果的矢量化。
非监督分类 前提:遥感影象上同类物体在同样条件下具有相同的光谱信息特征,依靠影象上不同类地物光谱信息(或纹理信息) 进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的个别类进行确认。 非监督分类方法是在没有先验类别(训练区)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度 非监督分类方法 的大小进行归类合并(将相似度大的像元归为一类)的方法。主要有: (1)分级集群法(2)动态聚类法
第二节 从影像生成专题地图
一、目视解释的专题地图
(1)影像预处理 包括遥感数据的图像校正、图像增强,有时还需要实验室提供监督或非监督分类的图像。
(2)目视解译 经过建立影像判读标志,野外判读,室内解译,得到绘有图斑的专题解译原图。
(3)地图概括 按比例尺及分类的要求,进行专题解译原图的概括。专题地图需要正规的地理底图,所以地图概括的同时也进行图斑向地理底图的转绘。
(4)地图整饰 在转绘完专题图斑的地理底图上进行专题地图的整饰工作。
二、数字图像处理的专题制图
(1)影像预处理 同目视解译类似,影响经过图像校正、图像增强,得到供计算机分类用的遥感影像数据。
(2)按专题要求进行影像分类。
(3)专题类别的地图概括 包括在预处理中消除影像的孤立点,依成图比例尺对图斑尺寸的限制进行栅格影像的概括。
(4)图斑的栅格/矢量变换。
(5)与地理底图叠加,生成专题地图。
三、遥感系列制图
系列地图,简单说就是在内容上和时间上有关联的一组地图。我们所讨论的系列地图,是指根据共同的制图目的,利用同一的制图信息源,按照统一的设计原则,成套编制的遥感专题地图。
地理底图的编制程序:采用常规的方法编制地理底图时,首先选择制图范围内相应比例尺的地形图,进行展点、镶嵌、照像,制成地图薄膜片,然后将膜片蒙在影像图上,用以更新地形图的地理要素。经过地图概括,最后制成供转绘专题影像图的地理底图,其比例尺与专题影响图相同。
遥感系列制图的基本要求
1.统一信息源
2.统一对制图区域地理特征的认识
3.制定统一的设计原则
4.按一定的规则顺序成图