导航:首页 > 安装方法 > 测量吸收剂量的最直接方法

测量吸收剂量的最直接方法

发布时间:2022-04-20 10:15:41

① 吸收剂量对任何物质都适用吗

吸收剂量并不是对任何物质都会适用的,它主要还是适用于液体,然而对固体和气体效果都不是太好的。

② 测量核辐射的方法、仪器及仪器图片

方法:

半衰期:放射性核素数目衰减到原来数目一半所需要的时间的期望值。

放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。A=dN/dt。

射气系数:在某一时间间隔内,岩石或矿石析出的射气量N1与同一时间间隔内该岩石或矿石中由衰变产生的全部射气量N2的比值,即η*= N1/N2×100%。

原子核基态:处于最低能量状态的原子核,这种核的能级状态叫基态。

核衰变:放射性核素的原子核自发的从一个核素的原子核变成另一种核素的原子核,并伴随放出射线的现象。

α衰变:放射性核素的原子核自发的放出α粒子而变成另一种核素的原子核的过程成为α衰变

衰变率:放射性核素单位时间内衰变的几率。

轨道电子俘获:原子核俘获了一个轨道电子,使原子核内的质子转变成中子并放出中微子的过程。

衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。

线衰减系数:射线在物质中穿行单位距离时被吸收的几率。

质量衰减系数:射线穿过单位质量介质时被吸收的几率或衰减的强度,也是线衰减系数除以密度。

铀镭平衡常数:表示矿(岩)石中铀镭质量比值与平衡状态时铀镭质量比值之比。

吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。D=dE/dm,吸收剂量单位为戈瑞(Gy)。

平均电离能:在物质中产生一个离子对所需要的平均能量。

碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。

核素:具有特定质量数,原子序数和核能态,而且其平均寿命长的足以已被观察的一类原子

粒子注量:进入单位立体球截面积的粒子数目。

粒子注量率:表示在单位时间内粒子注量的增量

能注量:在空间某一点处,射入以该点为中心的小球体内的所有的粒子能量总和除以该球的截面积

能注量率:单位时间内进入单位立体球截面积的粒子能量总和

比释动能:不带电电离粒子在质量为dm的某一物质内释放出的全部带电粒子的初始动能总和

剂量当量:某点处的吸收剂量与辐射权重因子加权求和

同位素:具有相同的原子序数,但质量数不同,亦即中子数不同的一组核素

照射量:X=dq/dm,以X射线或γ射线产出电离本领而做出的一种量度

照射量率:单位质量单位时间内γ射线在空间一体积元中产生的电荷。

剂量当量指数:全身均匀照射的年剂量的极限值

同质异能素:具有相同质量数和相同原子序数而半衰期有明显差别的核素

平均寿命:放射性原子核平均生存的时间.与衰变常熟互为倒数。

电离能量损耗率:带电粒子通过物质时,所经过的单位路程上,由于电离和激发而损失的平均能量

平衡含量铀:达到放射性平衡时的铀含量

分辨时间: 两个相邻脉冲之间最短时间间隔

康普顿边:发生康普顿散射时,当康普顿散射角为一百八十度时所形成的边

康普顿坪:当康普顿散射角为零到一百八十度时所形成的平台

累计效应:指y光子在介质中通过多次相互作用所引起的y光子能量吸收

边缘效应: 次级电子产生靠近晶体边缘,他可能益处晶体以致部分动能损失在晶体外,所引起的脉冲幅度减小

和峰效应: 两哥y光子同时被探测器晶体吸收产生幅度更大的脉冲,其对应能量为两个光子能量之和

双逃逸峰:指两个湮没光子不再进行相互作用就从探测器逃出去

响应函数: 探测器输出的脉冲幅度与入射γ射线能量之间的关系的数学表达式

能量分辨率: 表征γ射线谱仪对能量相近的γ射线分辨本领的参数

探测效率:表征γ射线照射量率与探测器输出脉冲1. 峰总比:全能峰的脉冲数与全谱下的脉冲数之比

峰康比:全能峰中心道最大计数与康普顿坪内平均计数之比

峰总比:全能峰内的脉冲数与全谱下的脉冲数之比

入射本征效率:指全谱下总脉冲数与射到晶体上的y光子数之比

本征峰效率:全能峰内脉冲数与射到晶体上y光子数之比

源探测效率:全谱下总计数率与放射源的y光子发射率之比

源峰探测效率:全能峰内脉冲数与放射源y光子发射率之比

光电吸收系数:光子发生光电效应吸收几率

光电截面:一个入射光子单位面积上的一个靶原子发生光电效应的几率

原子核基态:原子核最低能量状态

轫致辐射:高速带电粒子通过物质时与库仑场作用而减速或加速时伴生的电磁辐射。

俄歇电子:在原子壳层中产生电子空穴后处于高能级的电子和跃迁到这一层,同时释放能量,当释放的能量传递到另一层的一个电子,这个嗲你脱离原子而发射出来,发射出来的电子称为俄歇电子。

③ 请教:吸收计量和计量当量

剂量学量:比释动能、照射量、比转换能、吸收剂量。放射性量:活度、空气比释动能率常数。辐射防护的基本防护量:剂量当量(ICRP60号报告后推荐使用当量剂量)、当量剂量、有效剂量。防护量无法直接测量,能测量的是剂量学量和放射性量。辅助的防护量:待积当量剂量、待积有效剂量、剂量负担、集体有效剂量。用于外照射防护的实用量:周围剂量当量、定向剂量当量、个人剂量当量。 有效剂量一般是用在低剂量范围内的,主要是为管理者服务的,用来控制随机性效应的发生几率。在可能引发组织反应(确定性效应)的高剂量范围内,必须估计吸收剂量并考虑适当的相对生物效应,来评估辐射效应。例如,在前苏联的切尔诺贝利事故中,堆芯附近和核岛内的工作人员所受剂量评估时,就是考虑确定性效应的情况。ICRU定义的实用剂量当量量,是可间接测量的量,辐射仪表是用这些量校准的,在日常监测中这些剂量当量可以认为有足够的精度分别估计有效剂量和皮肤剂量,尤其是数值小于防护限值时。在核电正常运行时,仪表的指示数值通常小于防护限值,这是考虑的是随机性效应的情况。这些量都是针对参考人而言的,不是针对独立的单个人。因为个体差异性是存在的,这一点很重要。而且,随机性效应只是一个几率的问题。在所受剂量越高,癌症发病率的概率越高,但后果的严重程度与所受剂量大小无关。说白了,就是得上癌症,都是玩完了。这里要记住几率的问题,或者说是概率的问题。癌症发病率是大量人群的统计结果,不过这个大量人群事实上也是有限的人群,而且统计过程无法克服对照组和观测组之间的纯洁性和其他因子相对同一性。所以,统计过程和统计数值也就是个参考值。大家看看就可以了,不必听风就是雨,把自己吓出个毛病来。 小弟不才,脑袋里面的东西理起来有点费劲,有什么写错的地方,尤其是技术方面的内容,还望指出。共同进步。 另外,这样的问题建议你可放到辐射防护等栏目中?

④ 辐射的测量单位uSv/h,uGy/h,mR/h的中文名各是什么,哪个是居里

都不是居里。

第一个是微西弗每小时

第二个是微戈瑞每小时

第三个是毫雷姆每小时

只能说这4个单位都是表示放射性的。但这三个单位不能跟居里互相换算。

居里是表示放射性活度,另外三个表示的是放射性剂量。

对人体影响的话,都是用西弗来表示的。国家规定的相关行业工作人员,年平均辐射剂量不超过20毫西弗。

(4)测量吸收剂量的最直接方法扩展阅读:

辐射作用于物质引起的物理、化学或生物变化首先决定于物质单位质量吸收的辐射能量。因此吸收剂量是一个重要的物理量。但是研究表明,辐射类型不同时,即使同一物质吸收相同剂量,引起的变化也不相同,特别表现在对生物损伤的程度方面。

例如0.01戈瑞快中子的剂量引起的损伤和 0.1戈瑞γ辐射的剂量引起的损伤相当,即快中子的损伤因子为γ辐射的10倍。因此在辐射剂量学中建立了剂量当量这种物理量。吸收剂量的测量方法有空腔电离室法、量热法和化学剂量计。

⑤ γ辐射剂量率的测定

环境地表γ辐射剂量率是指田野、道路、森林、草地、广场以及建筑物内,地表上方一定高度处(通常为1m)由周围物质中的天然核素和人工核素发出的γ射线产生的空气吸收剂量率。吸收剂量表示单位质量物质所接受或吸收的平均辐射能量。吸收剂量的定义用公式表示为:吸收剂量 单位为Gy。 是质量为dm的物质吸收的电离辐射的平均能量。

γ辐射空气吸收剂量率仪主要有电离室型环境γ辐射空气吸收剂量率仪、塑料闪烁探测器的环境γ辐射空气吸收剂量率仪、具有能量补偿的计数管型环境γ辐射空气吸收剂量率仪以及具有能量补偿的热释光剂量计。

(1)技术要求

本法主要使用专用γ辐射剂量率仪器进行测量,要求测量环境地表γ辐射剂量率的仪表应具备以下主要性能和条件:

a.量程范围。低量程1×10-8~1×10-5Gy·h-1;高量程1×10-5~l×10-2Gy·h-1

b.相对固有误差:<15%。

c.能量响应:50keV~3MeV相对响应之差<30%(相对137Cs参考γ辐射源)。

d.角响应:0°~180°R/R≥0.8(137Csγ辐射源)(R,角响应平均值;R,刻度方向上的响应值)。

e.温度:-10~+40℃(即时测量仪表),-25~+50℃(连续测量仪表)。

f.相对湿度:95%(+35℃)。

仪器使用前要到校准实验室进行校准。

(2)仪器类型

用于环境γ辐射剂量率测定的仪器按探测器分类主要有电离室、闪烁探测器和计数管3种类型。

A.电离室。电离室是灵敏体积内充有适当气体的电离辐射探测器。探测器一般有高压极、收集极和保护极。高压极、收集极间加有高压电场。此电场不足以引起气体放大,但能够把电离辐射在灵敏体积内产生的离子电荷收集到电极上,供测量系统进行测量。环境γ放射性测量使用的电离室一般采用球形或圆柱形,见图66.23。电离室环境γ辐射空气吸收剂量仪的系统组成如图66.24所示。为提高灵敏度并缩小电离室体积,一般在灵敏体积内充有25~35kPa的高压气体,成为高气压电离室。

技术特点与存在问题。

a.常压电离室用于环境γ辐射剂量测查的优点是结构简单、能量响应好,缺点是灵敏度较低。在使用中,为提高灵敏度需要将灵敏体积做大,使仪器较为笨重,不便携带;常压电离室的灵敏度随温度气压的变化较大。测量时必须携带气压计,随时进行温度、气压修正。

图66.23 球形电离室示意图

图66.24 高气压电离室典型测量电路

b.高气压电离室用于环境γ辐射剂量测量的优点是由于充气压力高,测量灵敏度高于常压电离室;由于其密封特性好,不需要进行温度、气压修正,使用方便。存在的问题是在100keV以下电离室壁吸收会使读数偏低,增加壁厚可加强对低能放射性的吸收,改善电离室的低能响应,但缩小了电离室能量响应的范围。80keV以下的低能射线份额需要进行修正。

B.闪烁探测器。闪烁探测器主要有塑料闪烁体探测器和NaI晶体探测器

闪烁探测器是一种对于电离辐射灵敏的探测器。当电离辐射与闪烁体物质相互作用时,闪烁体物质的原子、分子被电离或激发,被电离或激发的原子、分子退激时,一部分电离、激发能量以光放射性形式释放,形成闪烁光。闪烁光被收集到光电转换器件上,发出光电子,产生输出信号。闪烁体发出的闪烁光与电离辐射的能量和空气比释动能有关。闪烁探测器的原理结构示意如图66.25。闪烁体探测器一般由闪烁体和光电转换器件组成。通常闪烁体通过光导与光电倍增管组成一体装入避光的暗盒中。

图66.25 闪烁探测器原理结构示意图

塑料闪烁体是有机闪烁物质在塑料中的固熔体,属于有机闪烁体。环境γ辐射空气吸收剂量仪采用的闪烁体主要是能量响应较好的塑料闪烁体或在塑料闪烁体中加一定量的锡或在闪烁体外表面涂上一层ZnS(Ag),使探测器的能量响应得到改善。

NaI(Tl)闪烁探测器具有灵敏度高的优点,由于其能量响应较差,所测量的数值偏差较大,在环境测量中已很少使用。也有经过技术改造后将其用于环境测量的。

技术特点与存在问题。

a.采用塑料闪烁体的仪器在25keV~1.3MeV范围内能量响应可达±10%,对于3MeV以上宇宙射线的高能量脉冲辐射易于出现饱和。其对于高能辐射的响应不好。

b.采用NaI(Tl)闪烁探测器的仪器对宇宙射线的响应小,而对低能量的γ射线响应过大。

c.由于光电倍增管的温度特性不好,使仪器随温度变化的特点十分明显。

C.高灵敏计数管。

图66.26 闪烁体探测器原理结构示意图

计数管是一种气体电离探测器,被探测的射线进入计数管灵敏体积内引起气体电离,生成正、负离子。后者在被电极收集过程中受电场加速获得足够能量,并再次使气体电离,即产生气体放大。放大终止后,在电场作用下正离子鞘向阴极漂移在阳极上感应出一

个电压脉冲。计数管在一定的工作电压下输出脉冲幅度相同,而与入射粒子能量、种类等无关。计数管输出的电压脉冲接入脉冲计数电路即可进行测量。若将脉冲计数率与计量率关系对应建立,就可以进行环境放射性空气吸收剂量测量。测量系统的原理电路如图66.26所示。

技术特点与存在问题。

a.计数管用于环境γ辐射空气吸收剂量测定具有系统简单、易于小型化的特点,可形成便携式现场测量仪器;同时其性能稳定,环境适应性好。它存在自身本底高、灵敏度较低、对低能响应大、需要进行能量平衡等缺点。

b.一般情况下,可用于环境水平测量的计数管自身本底大多在每分钟20~50个脉冲,约为40~100nGy/h。

(3)仪器的选择

由于高气压电离室对高能的宇宙射线响应好,由于其电离室壁是不锈钢材料,故对陆地辐射低于50keV的低能响应较差。塑料闪烁探测器低能区响应好,高能区响应差。所以,专业实验室常选择塑料闪烁体探测器和高气压电离室仪器共同进行环境测量,以实现互补。

各类环境γ辐射空气吸收剂量仪的对比见表66.14。

表66.14 各类环境γ辐射空气吸收剂量仪的对比

续表

(4)测量方法

环境地表γ辐射剂量率测量方式分两种。

a.即时测量。用各种γ剂量率仪直接测量出点位上的γ辐射空气吸收剂量率瞬时值。

b.连续测量。在核电厂等大型核设施的环境固定监测点上,测量从本底水平到事故的环境辐射场空气吸收剂量率的连续变化值。布设在固定监测点位上的热释光剂量计测出一定间隔时间内环境辐射场的累积剂量值。

(5)测量步骤

两种测量方法的测量程序都应按仪器校准、天然本底测量、测量点的确定、测点测量4个步骤进行。

A.仪器检查和校准。使用仪器前后,应认真检查,通常用监督源检查仪器的工作状态,确认其状态正常,方可使用。当仪器没有监督源时,可采用固定条件下的状态检查。

将仪器放置在一个固定地点上(室内、外均可)。由于雨雪天测量时本底值将明显降低,因此,室外测点应避免雨雪天测量。要求测点周围没有外来放射性干扰。长期测量该点的本底读数值,每次测量取10个读数,计算平均值Db,并绘出Db变化曲线。每次测量的10个读数的平均值与长期观测该点的平均值Db相对变化小于10%,则视为仪器正常,方可对仪器进行校准。

较好的办法是找一个空旷地带(距附近高大建筑物30m以上,高1.5m的地面上),放置一两个与测量对象核素和能量相似的标准源(Ra源即可),将仪器探测器与源处于同一水平线,按式(66.58)建立不同I与仪器读数的关系曲线(横坐标表示已知剂量率,纵坐标表示仪器读数)。减去仪器本底后,使曲线通过原点,横坐标与曲线的夹角为α,仪器读数与cotα的乘积即为校准后的某点剂量率。

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:R为源中心距探测器中心的距离;A为源的γ常数,1mg镭源距探测器1m处A为825×71.667fC/(kg·s);I为以γ单位表示的剂量率。

B.天然本底的测量。在进行γ辐射剂量率测量时需扣除仪表对宇宙射线的响应部分。不同仪表对宇宙射线的响应不同,可根据理论计算,或在水深大于3m,距岸边大于1000m的淡水面上测量或与对宇宙射线响应已知的仪表比较得出。环境γ辐射空气吸收剂量本底测量一般在室外选点,测量点应距离附近高大建筑物30m以上的空旷地带(最好在土地上),距地面100cm处进行测量。测量10个读数,计算平均值和平均值的标准偏差。

C.测量点的确定。测量的目的决定于测量点位置的布设。在一般建筑材料和建筑物内进行环境检测时,应按照测量目的和源项的照射途径,以及人群活动情况分别确定测量点位的布设。建筑材料测量应按照检测模型情况,将测量点设置在模型中央。探测器距模型表面50~100cm。

全国性或一定区域内的环境γ辐射本底调查,对同一网格点的建筑物、道路和原野(城市中的草坪和广场),γ辐射剂量率的测量可同时进行。

D.测量。

a.室内测量。要考虑建筑物的类型和层次。测量点一般选择在室内中央,距地面100cm处进行测量。若出现测量值异常时,则应按照100cm间距进行网格划分测量,以确定异常点的位置。距离墙壁应大于100cm。

b.室外测量。在城市中的道路、草坪和广场测量时,测点距附近高大建筑物的距离需大于30m,并选择在道路和广场的中间地面上1m处。

测量点应距离附近高大建筑物30m以上,距地面100cm处进行测量。室外环境地表测量时应考虑到降雨、降雪,以及氡、钍射气的析出与扩散、地面植被情况等因素的影响。所在山地丘陵地区还应注意到岩石露头的影响。

(6)剂量估算

环境γ辐射对居民产生的有效剂量当量可用下式进行估算:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:He为有效剂量当量,Sv;Dγ为环境地表γ辐射空气吸收剂量率,Gy·h-1;K为有效剂量当量率与空气吸收剂量率比值,本方法采用0.7Sv·Gy-1;t为环境中停留时间,h。

⑥ 辐照杀菌技术的剂量测量

1、放射性强度
又称放射性活度,是度量放射性强弱的物理量。
曾采用的单位有:
(1) 居里(Curie简写Ci)
若放射性同位素每秒有3.7×1010次核衰变,则它的放射性强度为1居里(Ci)。
(2) 贝可勒尔(Becqurel,简称贝可Bq)
1贝可表示放射性同位素每秒有一个原子核衰变。
(3) 克镭当量
放射γ射线的放射性同位素(即γ辐射源)和1克镭(密封在0.5mm厚铂滤片内)在同样条件下所起的电离作用相等时,其放射性强度就称为1克镭当量。
2、放射性比度
将一个化合物或元素中的放射性同位素的浓度称为放射性比度,也用以表示单位数量的物质的放射性强度。 照射量(Exposure)是用来度量X射线或γ射线在空气中电离能力的物理量。
使用的单位有:
(1) 伦琴(Roentgen,简写R)
(2) SI库仑/千克(C·kg-1) 1、吸收剂量单位
(1) 吸收剂量
被照射物质所吸收的射线的能量称为吸收剂量,其单位有:
(1) 拉德(rad)
(2) 戈瑞(Gray,简称Gy)。
(2)剂量率
是指单位质量被照射物质在单位时间内所吸收的能量。
(3)剂量当量
是用来度量不同类型的辐照所引起的不同的生物学效应,其单位为希(沃特)(Sv)。
(4)剂量当量率
是指单位时间内的剂量当量,单位为Sv·s-1或Sv·h-1。
2、吸收剂量测量
(1) 国家基准--采用Frickle剂量计(硫酸亚铁剂量计)
(2) 国家传递标准剂量测量体系--丙氨酸/ESR剂量计(属自由基型固体剂量计),硫酸铈-亚铈剂量计,重铬酸钾(银)-高氯酸剂量计,重铬酸银剂量计等
(3)常规剂量计--无色透明或红色有机玻璃片(聚甲基丙烯酸甲酯),三醋酸纤维素,基质为尼龙或PVC的含有隐色染料的辐照显色薄膜等

⑦ 剂量测量的仪器及原理

目前测量环境辐射外照射剂量,从测量方法上大体可分为三种:①瞬时剂量率测量;②累积剂量测量;③γ谱仪分析。

测量瞬时剂量率的仪器常采用电离室,GM计数管,闪烁剂量率仪等。测量累积剂量的仪器常采用热释光剂量计,近年国外发展使用驻极体电离室型探测器。γ谱分析仪器采用NaI(Tl),HP(Ge)为探测器的便携式就地测量γ谱仪。本节主要介绍瞬时测量及就地γ谱测量仪器及原理。

10.2.3.1 闪烁体型仪器测量剂量率

闪烁探测器是在环境外照射剂量测量中使用较广泛的一种仪器,主要由闪烁体和光电倍增管组成。所用的闪烁体主要有两类:塑料闪烁体和无机闪烁体。

用塑料闪烁体作为探测元件的闪烁型仪器,如德国产的PTB-7201,国产的FT620型和SG102型仪器,它的主要优点是:灵敏度高,能量响应好,质量轻,携带使用方便等。缺点是易受温度影响,自身本底较高,对宇宙射线响应存在问题。

塑料闪烁体型仪器的探测元件为圆柱型塑料闪烁体(φ75 mm×75 mm),其表面涂以ZnS(Ag)薄层。塑料闪烁体的能量响应曲线在很宽的光子能量范围(10 keV~3 MeV)内较为平坦。对于能量低于100 keV的光子,ZnS(Ag)的发光率约为塑料闪烁体的9~10倍,能够补偿塑料闪烁体对低能光子响应的降低。光电倍增管采用高增益低噪声的GDB-52LD型,以获得好的信噪比。光电倍增管外有一层磁屏蔽材料,使其不受外界磁场(包括地磁感应场)的影响。闪烁体外有一层蔽光套和一层保护套。整个探头要蔽光和密封。

仪器对宇宙射线的响应必须予以注意。其对宇宙射线的测量值与高压电离室测量值一般可在±10%之内相符合。对宇宙射线响应的仪器,在测量时,必须对测量值进行修正。当仪器在地面测量吸收剂量率为D,则有下述关系

环境地球物理学概论

式中:Dγ为地面上辐射空气吸收剂量率;D宇响为仪器对宇宙射线的响应值。

环境地球物理学概论

式中:D为地面辐射和宇宙射线的总空气吸收剂量率;D为测量点上宇宙射线实际空气吸收剂量率值。

10.2.3.2 高压电离室测量剂量率

在测量环境γ剂量率的各种仪器中,目前人们普遍认为高压电离室是一种灵敏度高,性能可靠,测量精确度高的仪器。高压电离室环境辐射剂量率仪由球形(或圆柱型)高压电离室、弱电流放大器和数据显示部分组成。

球形高压电离室是一个直径为200~250 mm,室壁厚度为1.5~3 mm的不锈钢球,内充高纯氩气体,收集极是置于球形电离室中心的小空心不锈钢球,用细不锈钢管支持于外球中心,经三轴金属-陶瓷绝缘子引出。

当射线在电离室的室壁和气体中产生电离时,气体中离子在电场作用下运动,被收集极收集产生输出电流讯号。在电子平衡的条件下,γ射线在电离室中产生的电流讯号与自由空气中的吸收剂量率有关。

充氩-钢壁电离室对γ辐射响应为

环境地球物理学概论

式中:(μen/ρ)Ar和(μen/ρ)Air分别是氩气和空气的质量吸收系数,该比值是γ辐射能量E的函数;WAir和WAr是在空气和氩气中形成一个离子对所需要的平均能量;p是在0℃时所充压力;V是电离室的体积;Bγ和Be分别是γ吸收剂量累积因子和电子吸收剂量累积因子,Bγ和Be与有效壁厚度、源能量和充氩量pV有关。而且,除了在低能与低气压之外,其依赖关系较小;(μ/ρ)是钢壁对γ射线的质量减弱系数;x是室壁有效厚度。

高压电离室对宇宙射线响应,可用下式表示

环境地球物理学概论

式中:S为气体对于宇宙射线带电粒子的碰撞阻止本领,氩气与空气对于宇宙射线μ介子和电子阻止本领比为0.85;ρ为气体密度,ρArAir=1.38;W为气体介质中产生一个离子对所消耗的平均能量,WAir/WAr=33.85/26.4。于是由式(10.2.40)得到

环境地球物理学概论

上式推导中,假设对于宇宙射线高能带电粒子,钢壁充氩电离室系统被视为在空气介质中的氩空腔,根据空腔电离理论原理推导得出。但是,实际上,在空气介质中围绕氩空腔的是钢壁。因此,由宇宙射线中高能电子在钢壁中产生的电磁簇射强于在空气介质中,从而发生过渡效应。从有关文献的理论计算和实际测量得到不同壁厚的过渡因子(或称“t”因子,原文为“Transitior Effect”),引入过渡因子后式(10.2.41)有

环境地球物理学概论

式中:T为电离室室壁的过渡因子。

在一般本底环境辐射场中电离室输出总电流可表示为

环境地球物理学概论

式中:Iγ为地球γ辐射产生的电离电流;Ic为宇宙射线产生的电离电流;Ib为绝缘子电压、漏电电流和电离室内壁放出的α粒子所产生的电离电流之和。

在天然环境辐射场中测量的吸收剂量率,可用下式表示:

环境地球物理学概论

式中忽略了Ib,因为国产的电离室自身本底一般不大于1×10-16A。

⑧ 吸收剂量的吸收剂量

电离辐射给予单位质量物质的能量。严格的定义是电离辐射给予质量为dm的物质的平均授予能量dE被dm除所得的商,用D表示。它的国际单位制单位是戈瑞(Gy),1Gy=1J/Kg。以前习惯使用的单位是拉德(rad)。1rad=0.01Gy。剂量本来是医疗中使用的词,指一次或一定时间内服用的药物量,当X辐射最初用于治疗时,医生很自然地采用了这个词。辐射作用于物质引起的物理、化学或生物变化首先决定于物质单位质量吸收的辐射能量。因此吸收剂量是一个重要的物理量。但是研究表明,辐射类型不同时,即使同一物质吸收相同剂量,引起的变化也不相同,特别表现在对生物损伤的程度方面。例如0.01戈瑞快中子的剂量引起的损伤和 0.1戈瑞γ辐射的剂量引起的损伤相当,即快中子的损伤因子为γ辐射的10倍。因此在辐射剂量学中建立了剂量当量这种物理量。吸收剂量的测量方法有空腔电离室法、量热法和化学剂量计。

⑨ 照射量,吸收剂量和剂量当量这三种辐射量有何区别与联系

区别:
三者的剂量学含意及适用类型不同:吸收剂量适用于任何物质和任何一种辐射类型,它在辐射生物学、临床放射学和放射防护中都是基本的剂量学量,描述的是辐射授与物质的平均能量;照射量则仅适用Xγ 幷且作用物质仅限于空气介质,它描述的是Xγ在空气中的电离能力。
剂量当量是指在要研究的组织中某点处的吸收剂量、品质因素和其它一切修正因数的乘积。

联系:
照射量作用物质仅限于空气介质,但在实际应用中,照射量幷不只适用于无限延展的空气中,如对直接测量困难的生物体的吸收剂量通常就是借助人体模型进行照射量测量后的转化:它们转化关系D = fX(f为转换系数),所以在医用X、r照射的防护上,在小于15%
的数值差异可以忽略时,我们可以将以R为单位的照射量在数值上看作以rad为单位的空气、水及软组织的吸收剂量(用国际单位mGy时可认为1R的照射量近似为10mGy的吸收剂量。)
吸收剂量与辐射的品质因子的乘积。严格的定义是吸收剂量D、辐射品质因子 Q和其他一切修正因子N的乘积,用H表示。它的国际单位制单位是希沃特(Sv),1Sv=1J/kg。以前使用的单位是雷姆(rem),1 rem=10-2Sv。 吸收剂量是电离辐射给予物质单位质量的能量,是研究辐射作用于物质引起各种变化的一个重要物理量,但是由于辐射类型不同,即使同一物质吸收相同的剂量,引起的变化却不等同。

阅读全文

与测量吸收剂量的最直接方法相关的资料

热点内容
马原中归纳的方法有什么局限性 浏览:511
灯具遥控安装方法 浏览:989
在家地震预警有哪些方法论 浏览:402
气缸圆柱度的检测方法 浏览:217
东风制动灯故障原因和解决方法 浏览:312
简谐运动研究方法 浏览:126
幼儿异物吸入的抢救方法有哪些 浏览:212
开衫毛衣尺寸的经典计算方法 浏览:357
广电有线连接方法 浏览:828
局解血管的检查常用方法 浏览:991
瑜伽的技巧和方法 浏览:835
写出五种植物的传播方法 浏览:101
治疗脾气差的最佳方法 浏览:817
花卉满天星的种植方法 浏览:968
风控未通检测方法 浏览:768
根管治疗术的步骤和方法 浏览:183
去脚臭的简单的方法 浏览:935
二年级语文教学方法和教学手段 浏览:73
学前教育研究方法课题 浏览:870
瑜伽胳膊锻炼方法 浏览:126