Ⅰ 三相有功功率测量有哪些方法
1、可以通过接功率表的方法测量;
2、如果已知电压和电流及功率因数可以用计算的方法求得;
3、在综保中有的有计量有功功率的功能;
4、如果负荷一段时间恒定不变(可以根据电流判定),可以根据电能表的电量除以时间求得。
Ⅱ 三相电路功率的测量
1.1 对称三相电路功率的测量
对称三相电路即三相电源对称、三相负载均衡的三相电路。以下分别从三相四线制和三相三线制两种情况讨论。
对三相四线制系统,测三相平均功率的接线如图1 所示。它的接线特点是每个功率表所接的电压均是以中线N 为参考点,三个功率表WAN、WBN 和WCN 的读数分别为PAN,PBN 和PCN,可用式(1)表示。
图1 三表法测三相四线制三相负载平均功率的接线示意图
三相的总功率为P = P CN + P BN +P AN 。三个表的读数均有明确的物理意义,即PAN,PBN 和PCN 分别表示A 相、B 相和C 相负载各自吸收的平均功率。这就是三表法。这种接线方法是最容易理解的。
实际上,三表法测三相功率不止图1 所示的一种接线方式,另外还有三种接线方式,如图2 所示,分别称作共A,共B 和共C 接法(与此相对应,图1 中的接法可称作共中线N 接法)。对应每一种接线中的三个表的读数的代数和均表示三相负载吸收的总功率(后面将给出证明)。实际上,因为是对称三相电路,有i N =0 ,所以图2(a),(b)和(c)中的W NA , W NBW NC的读数必为零,在测量时可不接,此时的三表法便简化为两表法。可见,此时的两表法是三表法的特例。当然,这里单个表的读数没有明确的物理意义。
上述四种三表法的接线的特点是每组接线中的三个表所接电压均以同一根线为参考点,即分别是共A, B, C 或N,而电流则分别是非参考线中的电流。功率表接线的极性端如图中所示。
(a) 共A接法
(b) 共B接法
(c) 共C接法
图2 三表法测三相四线制三相负载平均功率的另三种接线图
对于三相三线制系统(Y 接或Δ接),由于没有中线,故图1 所示的接法便不存在,图2中接在中线上的功率表也不存在。此时的接线方法将只有图3 所示的共A, 共B 和共C 三种接线方式。可见,此时功率的测量只能用两表法测量,每组接线中单个功率表的读数没有物理意义,两个表读数的代数和表示三相负载吸收的总平均功率。
以图3(c)共c 接法为例,两个表W AC WBC 和的读数分别为
如果是对称三相电路,式(2)可进一步简化为
式(3)中UL,IL 分别为线电压和线电流; ϕ为负载的阻抗角。
(a) 共A接法
(b) 共B 接法
(c) 共C 接法
图3 二表法测量三相三线制三相负载平均功率的测量接线图
图3(a)和(b)中的两个表的读数类似得到。三相三线制系统中的例外情况是Y 接时中点可以引出的情况。此时可以将功率表的公共点接在N 点,即仍可以用三表法测三相功率。三个表的读数仍分别表示对应相的负载功率。但此时实际上是相当于从负载中点引出一中线,对负载端而言,可将其归于三相四线制。
1.2 不对称三相电路的功率测量
不对称三相电路又可分为三相电源对称、负载不对称和电源、负载均不对称等情况。在本文的功率测量方法讨论中,它们并无差别。讨论仍分别从三相四线制和三相三线制两种情况讨论
(1)不对称三相四线制系统。其测量接线图仍分别有图1 和图2 四种接线方式。与对称三相电路不同的是,此时中电流 i N ≠0 ,所以,图2 中电流线圈接在中线上的功率表读数一般不为零。就是说,此时两表法不再成立,而必须用三表法测得三相负载的总功率。
以图2(c)共C 接线为例,三个功率表W AC ,W BC,W NC 的读数分别为
式(4)中的三个功率P AC , P BC,P NC 和的代数和即表示三相负载吸收的平均功率。证明如下。
瞬时功率
电流关系为
将式(6)代入式(5),得
式(7)两边在一个周期内取平均值,得
可见,用图2(c)的共C 接法的三表法同样可测出三相电路的总平均功率。同样可以证明图2(a)和(b)中的三个功率表读数的代数和是不对称三相电路的总平均功率。但图2 所示的三种接线中,单个表的读数无明确物理意义。
(2)不对称三相三线制(Y 接和Δ接)系统。其功率测量接线将只有图3 所示的三种两表法的接线方式。其读数的表达式仍如式(2)所示(共C 接法)。对称和不对称两种情况的不同之处是,在对称三相电路中,两表的读数表达式有式(3)所示的简单结果,而不对称时无此结果。
不对称三相三线制系统的例外情况依然是Y 接时中点可以引出的情况。此时可以将功率表的公共点接在N 点,即仍可以用三表法测三相功率。
Ⅲ 与两瓦特表法相比较,三瓦特表法有什么优点
两瓦特表法,适用于三相于负载比较平衡的场合,尤其是向电动机这种没有中性线电流的地方。
三瓦特表法,适用于任何三相负载的情况。无需考虑负荷平衡问题。
至于你补充的“三相功率测量的方法与结果”问题,不知道怎么给你说,如果你学过电路(电工电子也好),里面会告诉你是怎么回事儿的。也可以查一下相关的书籍,可以到就进任何一个(新华)书店看一下。
但愿我的回答对你有所帮助。
Ⅳ 三相功率的测量(二表法)
不管负载是否对称,两块瓦特表可接到任意两相,但是,最重要的是电压端子和电流端子不能接错,我见过许多有经验的电工,把上述端子接错,使得实测的功率偏小。就是一定要记住:瓦特表上的电压出口端子一定要接到未接瓦特表的那一相的电压,不注意很容易把相序搞乱。
Ⅳ 总结分析三相电路功率测量的方法与结果,什么情况下用二表法什么情况下用三表
有四种接线形式。
1、是单台电流互感器的接线形式。
只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表。
2、三相完全星形接线和三角形接线形式。
三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中。只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集。
三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护。
3、两相不完全星形接线形式。
在实际工作中用得最多。它节省了一台电流互感器,用A、C相的合成电流形成反相的B相电流。二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护。
4、两相差电流接线形式。
也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
(5)三相功率测量的方法与结果总结扩展阅读
功率表的正确接法必须遵守“发电机端”的接线规则。
1、功率表标有“*”号的电流端必须接至电源的一端,而另一端则接至负载端。电流线圈是串联接入电路的。
2、 功率表上标有“*”号的电压端子可接电流端的任一端而另一端子则并联至负载的另一端。功率表的电压支路是并联接入电路的。
它们的用途是:
①如将对应端按图中所示接在一起,则当功率表的指针正向偏转时,表示能量由左向右传送;若指针反向偏转,表示能量由右向左传送。
②电流线圈的任一接线端应与电压线圈标有 “*”符号的接线端连接,这样线圈间电位比较接近,可减小其间的寄生电容电流和静电力,保证功率表的准确度和安全。
Ⅵ 三相电路有功功率测量的方法与结果
现在有专门的仪器可以测很方便,便宜的叫钳型功率表,有三相也有单相
Ⅶ 三相交流电路电压电流测量实验的心得体会
在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。
我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些形形色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。
电路实验心得体会3篇心得体会,学习心得在戴维南定理的验证实验中,了解到对于任何一个线性有源网络,总可以用一个电压源于一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。
这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。
(7)三相功率测量的方法与结果总结扩展阅读:
在接下来的常用电子仪器使用实验中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。
总的来说,通过此次电路实验,我的收获真的是蛮大的,不只是学会了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次实验过程中,更好的培养了我们的具体实验的能力。又因为在在实验过程中有许多实验现象,需要我们仔细的观察,并且分析现象的原因。
特别有时当实验现象与我们预计的结果不相符时,就更加的需要我们仔细的思考和分析了,并且进行适当的调节。因此电路实验可以培养我们的观察能力、动手操做能力和独立思考能力。
Ⅷ 三相电路有功功率和无功功率的测量方法。
有功功率和无功功率的测量,均有单独的测量仪表,统称为电能表。也可安装其中的一块电表和功率因数表,然后再计算出有功率或无功功率。
安装上述仪表的具体规定请参照电力行业标准《DL/T 825-2002 电能计量装置安装接线规则》。
Ⅸ 三相电路功率的测量结论
有四种接线形式。
1、是单台电流互感器的接线形式。
只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表。
2、三相完全星形接线和三角形接线形式。
三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中。只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集。
三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护。3、两相不完全星形接线形式。
在实际工作中用得最多。它节省了一台电流互感器,用A、C相的合成电流形成反相的B相电流。二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护。
4、两相差电流接线形式。
也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
Ⅹ 三相电路功率的测试比较一瓦特表法和二瓦特表法的测量结果
一瓦特法只能用于三相对称电路的功率测试,三相功率之和等于单相功率读数的三倍。 二瓦特法采用两个功率表测量三相电路的三相总功率,三相功率之和等于两个单相功率表的读数之和。其理论依据是基尔霍夫电流定律,适用于三相三线制系统的三相功率测试,与系统是否对称无关。详情请参见《浅谈变频电机试验的功率测试》