① 当测量阻尼振动的周期时,测10T与测T的方法有何区别
测量10T可以有效的减少实验误差,获得更加精确的实验数据
② 测量阻尼振动的周期时,测10t和测t的方法有何区别
10T 指测量摆周期,每读取10周期吧?
利用三线摆测量转惯量要求悬盘摆角要,摆才能看谐振.每读周期,误差,读取10周期减误差.
感觉这样的提问没有意义
建议自己下去查查资料
③ 请问大家,如何测一种材料的阻尼
共振测试
http://wenku..com/view/dd8e362c0066f5335a81215f.html
④ 怎么测量阻尼行管或不带阻尼行管
不带阻尼的行管,测量方法和普通三极管一样,带阻尼的行管,B、E极正反向电阻约为20至30欧。
⑤ 怎么测弹簧阻尼
我是搞建筑结构的,最近在研究一种阻尼器,也在考虑这个问题。我想的办法是把这个弹簧一端固定,另一端和一个已知质量的滑块连接,滑块与地面的摩擦要尽量小(最好用小车子),然后把弹簧拉长到一个长度,放手,等滑块自由振动直至停止。用位移计记录下整个过程的位移时程,根据结构动力学公式,在阻尼不是很大的情况下,阻尼比=[ln(这一周期振幅/下一周期振幅)]/(2*3.1415926)。
⑥ 汽车减振器试验阻尼力怎么测量
减振器阻尼力的测量需要专门的设备,按照不同的振幅、速度要求,测量出在该速度下的减振器的阻尼力——即减振器的外特性。测量时的加振信号为正弦波。
试验设备有液压式试验台,机械式试验台,电磁式试验台。
⑦ 三极管带阻尼和不带阻尼的怎么分辨怎么用万能表测量
三极管带阻尼一般用于NPN大功率管,阻尼二极管接与C、E之间,阻尼二极管负接C;阻尼二极管正接E;
万能表(指针式)测量方法:欧姆乘100档,如果三极管不带阻尼,C、E之间正反表棒交换测量表针都不动;
如果红表棒接C,黑红表棒接E,表针动一半或以上,反过来黑表棒接C,红表棒接E,表针不动,说明三极管带阻尼。
⑧ 如何测定阻力
可以通过二力平衡计算,当动力和阻力相同时物体可以做匀速直线运动,此时的动力大小就是阻力的大小了。
⑨ 波尔共振实验中有几种测定阻尼系数的方法
一、首先,相位差是指受迫振动位移和强迫力间的相位差,而闪光灯是受摆轮信号灯电门控制的,每当摆轮通过平衡位置,即受迫力为零时,闪光灯闪光,在其照射下指针的位置就是受迫振动最大位移时的位置,因此稳定时此角度不变,为受迫振动与驱动力矩的相位差。
二、利用波尔共振仪研究受迫振动实验报告;实验目的与要求;
1、研究波尔共振仪中弹性摆轮受迫振动的幅频、相频;
2、研究不同阻尼力矩对受迫振动的影响,观察共振现;
3、学习用频闪法测定运动物体的某些量,如相位差;
三、实验原理;
1、受迫振动和策动力;物体在周期外力的持续作用下发生的振动称为受迫振动;
2、振动方程求解;实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼;d 利用波尔共振仪研究受迫振动实验报告 。
(9)测量阻尼的方法扩展阅读:
阻尼系数大表示功率放大器的输出电阻小,阻尼系数是放大器在信号消失后控制扬声器锥体运动的能力。具有高阻尼系数的放大器,对于扬声器更象一个短路,在信号终止时能减小其振动。 功率放大器的输出阻抗会直接影响扬声器系统的低频Q值,从而影响系统的低频特性。
扬声器系统的Q值不宜过高,一般在0.5~l范围内较好,功率放大器的输出阻抗是使低频Q值上升的因素,所以一般希望功率放大器的输出阻抗小、阻尼系数大为好。阻尼系数一般在几十到几百之间,优质专业功率放大器的阻尼系数可高达200以上。
阻尼系数KD定义为:KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。由于功放输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。
KD值越大,电阻尼量越重,当然功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。
因此在选取功放时不应片面追求大的KD值。作为家用高保真功放阻尼系数有一个经验值可供参考,最低要求:晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6。
⑩ 一个机械系统的阻尼系数怎么测定
不是的。 力学阻尼系数 1.阻尼模型 结构阻尼是对振动结构所耗散的能量的测量,通常用振动一次的能量耗散率来表示结构阻尼的强弱。典型结构体系的真实阻尼特性是很复杂和难于确定的。近几十年来,人们提出了多种阻尼理论假设,在众多的阻尼理论假设中,用得较多的是两种线性阻尼理论:粘滞阻尼理论和复阻尼理论(滞变阻尼理论)。 粘滞阻尼理论可导出简单的运动方程形式,因此被广泛应用。可是它有一个严重的缺点,即每周能量损失依赖于激励频率。这种依赖关系是与大量试验结果不符的,试验结果表明阻尼力和试验频率几乎是无关的。因此,自然期望消除阻尼力对频率的依赖。这可以用称为滞变阻尼的形式代替粘滞阻尼来实现。滞变阻尼可定义为一种与速度同相而与位移成比例的阻尼力。在考虑阻尼时在弹性模量或刚度系数项前乘以复常数 即可,v为复阻尼系数。复阻尼理论对于一般的结构动力响应来说,计算过程非常复杂,因此,在动力响应分析中,复阻尼理论应用不多,本文限于篇幅,也就不再了。 粘滞阻尼理论假定阻尼力与运动速度成正比,通常是用不同频率的阻尼比ζ来表征系统的阻尼: 粘滞阻尼理论最显着的特点在于其阻尼力是直接根据与相对速度成正比的关系给出的,不论是简谐振动或是非简谐振动,都可直接写出系统的运动方程,而且均为线性微分方程,给理论分析带来了很大的方便。 2.阻尼选取对实际抗震分析的影响 目前,桥梁地震反应分析一般以直接积分的时程分析方法为主。其阻尼模型取Rayleigh阻尼模型,并以主塔或主梁的两个较低阶振型频率ωi和ωj对应的阻尼比作为ζi和ζj,求出其余各阶频率的阻尼比,并求出阻尼矩阵代入动力方程,用直接积分的方法求解动力方程。 3.解决方法 由以上论述,我们已经了解到阻尼是一个非常复杂的问题,仅仅依靠Rayleigh阻尼模型,会对大跨桥梁尤其是边墩辅助墩等部位的地震反应分析出现不应有的误差。因此,我们尝试寻找一种既不过分繁琐又比较准确的方法。 在前面的论述中,我们发现阻尼比是反应阻尼的一个方便而有效的量,它把阻尼特性和振型频率联系起来,使得动力方程分析起来更为简单,而且阻尼比可以通过桥梁实测测出。 如果我们直接指定对桥塔。主梁、边墩等重要部位反应起主要作用的一些振型频率的阻尼比,而对其余各阶振型频率的阻尼比采用线性内插的方法确定,这样做也可以形成阻尼比矩阵。由于我们通过以前的工程实例发现结构各部位的反应来说少数几阶振型的贡献最为显着(这些振型的贡献占到70%~ 80%,甚至更多),因此,这样做能够保证计算的正确性,而且并不繁琐,此对,以实测试验数据作为基础,更增加了其准确性。同济大学桥梁系近十几年来,通过为国内几十座大型桥梁进行竣工检测、成桥检测积累了大量的阻尼实测资料,并有研究人员准备把这些阻尼资料整理形成桥梁阻尼数据库。有了这些数据资料为基础,通过指定主要振型频率阻尼比,来计算结构动力反应是行得通的,并且结合下面的振型叠加法,会使计算更加简便。 阻尼比的概念 阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。 阻尼比在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间. ζ <1的单自由度系统自由振动下的位移 u(t) = exp(-ζ wn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = wn*sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A由初始条件决定 。 阻尼比的取值 对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了供一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间,对于钢-混凝土结构则根据钢和混凝土对结构整体刚度的贡献率取为0.025-0.035。 以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。该阻尼比即为各阶振型的阻尼比的值。 另外,对于一些常见的材料的损耗因子(对于材料,常称之为损耗因子,一般可以通过特定关系转换为阻尼比),可以参考如下数值:钢、铁:1E-4~6E-4,铝:1E-4;铜:2E-3;粘弹性材料:0.2~5;软木塞:0.13~0.17;混凝土:0.015~0.05,等等 。