导航:首页 > 安装方法 > 蛋白液比重测量方法

蛋白液比重测量方法

发布时间:2022-03-05 04:01:40

‘壹’ 如何测量液体的比重

把被测液体倒入量筒 然后插入比重计 比重计不能与量筒底部有力的作用 所以对量筒的液面高度有一定要求 具体多高要根据具体数据才能求出

‘贰’ 液体比重计的测试方法分类:

液体比重的量测方法选择,依赖样品材料的属性和所需的精确程度。今针对阿基米得原理,应用浮力法和置换法对液体的比重测定和经阿累尼斯原理的直线方程式,将密度转换为浓度。提出更详细的说明。A、真溶液测试方法:
应用于:化工溶液、食品、水产养殖、漱口水、药剂。
原理:根据GB/T13531、T5526、T5009规范。应用阿基米得原理的浮力法、置换法。可由阿累尼
斯原理的直线方程式将密度转换为浓度。
B、化学挥发性试剂测试方法:
应用于:液态石油燃料、化学挥发性试剂、挥发性药剂。
原理:根据GB/T611、ISO3696、JIG171规范。应用阿基米得原理的比重瓶容积置换法、浮力法。可由阿累尼斯原理的直线方程式,将密度转换为浓度。
C、中、高黏度液体测试方法:应用于:分散漆、陶瓷浆、油墨、液态树脂、研磨液体、沥青、液态
胶黏剂、中、高黏性流动性液体。
原理:根据GB/T21862、GB/T15223、GB/T6750、ASTM D1475、之规定,采用阿基米得的浸渍Gamma球体积置换法。可由阿累尼斯原理的直线方程式,将密度转换为浓度。
D、恒温式香精、精油比重测试方法:
应用于:精油、香水、单璃及合成香料。
原 原理:根据GB/T11540、ISO279、GB/T14455、GB/T5526、13531、5009、JIS规范。采用阿基米得原理的浮力法,水槽的
溶液温度处于恒温的条件下。可由阿累尼斯原理的直线方程
式,将密度转换为浓度。
E、悬浮液、乳状液测试方法:
应用于:奶油、化妆水、蛋黄酱、牛奶、醋、植物油,调味品等。
原理:根据GB/T5526、T5009、T13531规范。应用阿基米得原理的浮力法、置换法。F、非流动性液体比重测试方法:
应用于:牙膏、唇膏、树脂凝胶黏着剂、麦芽糖、高黏度非流动性液态。
原理:根据ASTMD792、ISO2781 、GB/T1033规范。依据阿基米得原理的浮力法。
G、水银测试方法:
应用于:测定多孔性材料的表观密度所使用水银的比重、水银回收生产厂。
原理:根据GB/T21862、ASTM D1475、ISO2811-2、DIN53217-3之规定,采用阿基米得的浸渍Gamma球体积置换法。可由阿累尼斯原理的直线方程序,密度转换为浓度。
H、在线式液体比重测试方法:
应用于:电镀槽,蚀刻槽,洗涤槽及工业各制程的现场侦测。
原理:应用阿基米得的浮力法原理,将主机放在一个容易操作
的平台上,主机内装有取样槽,液体由取样槽内的进出
孔进出,透过取样槽内感应球的浮力变化自动显出液体
的比重值。透过连续的动作即可完成在线液体的密度测
量与监控。快速读取量测液体的在线密度数值。
I、血液(硫酸铜)比重测试方法:
应用于:医院、血库、研究实验室、献血者血红蛋白的筛检。
原理:根据GB18467-2001规范,采用阿基米得原理的浮力法,
读出硫酸铜液体密度值,进而测定血液的比重与知晓血
红蛋白含量。

‘叁’ 测量蛋白质总量的方法有哪些

1.凝胶过滤法 凝胶过滤法分离蛋白质的原理是根据蛋白质分子量的大小。由于不同排阻范围的葡聚糖凝胶有一特定的蛋白质分子量范围,在此范围内,分子量的对数和洗脱体积之间成线性关系。因此,用几种已知分子量的蛋白质为标准,进行凝胶层析,以每种蛋白质的洗脱体积对它们的分子量的对数作图,绘制出标准洗脱曲线。未知蛋白质在同样的条件下进行凝胶层析,根据其所用的洗脱体积,从标准洗脱曲线上可求出此未知蛋白质对应的分子量。
2.SDS-聚丙烯酰胺凝胶电泳法 蛋白质在普通聚丙烯酰胺凝胶中的电泳速度取决于蛋白质分子的大小、分子形状和所带电荷的多少。SDS(十二烷基磺酸钠)是一种去污剂,可使蛋白质变性并解离成亚基。当蛋白质样品中加入SDS后,SDS与蛋白质分子结合,使蛋白质分子带上大量的强负电荷,并且使蛋白质分子的形状都变成短棒状,从而消除了蛋白质分子之间原有的带电荷量和分子形状的差异。这样电泳的速度只取决于蛋白质分子量的大小,蛋白质分子在电泳中的相对迁移率和分子质量的对数成直线关系。以标准蛋白质分子质量的对数和其相对迁移率作图,得到标准曲线,根据所测样品的相对迁移率,从标准曲线上便可查出其分子质量。
3.沉降法(超速离心法) 沉降系数(S)是指单位离心场强度溶质的沉降速度。S也常用于近似地描述生物大分子的大小。蛋白质溶液经高速离心分离时,由于比重关系,蛋白质分子趋于下沉,沉降速度与蛋白质颗粒大小成正比,应用光学方法观察离心过程中蛋白质颗粒的沉降行为,可判断出蛋白质的沉降速度。根据沉降速度可求出沉降系数,将S带入公式,即可计算出蛋白质的分子质量。质的沉降速度。S也常用于近似地描述生物大分子的大小。蛋白质溶液经高速离心分离时,由于比重关系,蛋白质分子趋于下沉,沉降速度与蛋白质颗粒大小成正比,应用光学方法观察离心过程中蛋白质颗粒的沉降行为,可判断出蛋白质的沉降速度。根据沉降速度可求出沉降系数,将S带入公式,即可计算出蛋白质的分子质量。

‘肆’ 国家标准检测蛋白质含量测定方法

蛋白质含量测定方法就是检测N元素的含量,像三聚氰胺的问题,就是通过增加N的含量使“蛋白质”含量提高的。

国家标准检测蛋白质含量的方法叫做凯氏定氮法,食物中的蛋白质在催化加热条件下分解,导致氨和硫酸结合产生硫酸铵。 碱蒸馏采用无硫,硼酸吸收,用硫酸或盐酸标准滴定溶液滴定,根据酸耗计算氮含量,再乘以转化系数,即蛋白质含量。

具体操作步骤如下:

1.样品处理

精确称量0.2-2.0g固体样品或2-5g半固体样品或吸收10-20ml液体样品(约30-40mg氮当量)。将其转移至干燥的100毫升或500毫升氮气固定瓶中,加入0.2克硫酸铜,6克硫酸钾和20毫升硫酸,轻轻摇动,在瓶口放置一个小漏斗,将瓶子倾斜石棉网上有45度角,有小孔。

加热小火后,内容物碳化,泡沫完全停止,加强火力,保持瓶内液体稍微沸腾,直至液体呈蓝绿色澄清透明,然后继续加热0.5小时。取出并冷却,小心加入20毫升水,冷却,移入100毫升容量瓶中,用少量水洗净氮气瓶,洗净液放入容量瓶中,然后用水冲洗至刻度,混匀备用。

取相同量的硫酸铜,硫酸钾和浓硫酸作为试剂进行空白试验。然而,这种方法很危险,很难在实验室中证明。大多数实验室都有一个消化器,可以一次处理16个以上的样品和一个可以自行设定温度的呼吸机。它更安全,更可操作。

(4)蛋白液比重测量方法扩展阅读

除了凯氏定氮法以外,标准的测量方法还有:

食品中的蛋白质在催化加热条件下被分解,分解产生的氨与硫酸结合生成硫酸铵,在pH4.8的乙酸钠-乙酸缓冲溶液中与乙酰丙酮和甲醛反应生成黄色的3,5-二乙酰-2,6-二甲基-1,4-二氢化吡啶化合物。在波长400nm 下测定吸光度值,与标准系列比较定量,结果乘以换算系数,即为蛋白质含量。

样品在900~1200℃下燃烧。在燃烧过程中,产生混合气体。 诸如碳,硫和盐的干扰气体被吸收管吸收,氮氧化物被还原成氮。 形成的氮气流由热导检测器(TCD)检测。

‘伍’ 测定蛋白质分子量的常用方法

蛋白定量的测试方法有很多种,其中较为常见的有五种,分别是Bradford法、Bradford斑点试验、Coomassie 斑点试验、紫外分光度检测法及BCA法这五种。

在生化实验中,对样品中的蛋白质进行准确可靠的定量分析,是经常进行的一项非常重要的工作。蛋白质是一种十分重要的生物大分子,它的种类很多,结构不均一,分子量又相差很大,功能各异,这样就给建立一个理想而又通用的蛋白质定量分析的方法带来了许多具体的因难。

(5)蛋白液比重测量方法扩展阅读

蛋白定量分析也就涉及到生产科研的多个领域及行业,也是生物学科、食品检验及掺假掺伪、临床检验、诊断疾病和质量检验中最常见的方法。

蛋白定量是生物学实验不可缺少的一部分。为验证细胞裂解是否成功,或为了将多个样品进行平行实验比较或标准化保存,需对细胞裂解液进行蛋白定量。

为了判定蛋白的产量,需对纯化好的蛋白进行定量。为了将纯化好的蛋白用生物素或者报告酶进行标记,同样需首先对蛋白样品进行定量,以保证标记反应在适当的化学浓度下进行。

‘陆’ 蛋白质测量方法

生物材料的含氮量测定在生物化学研究中具有一定的意义,如蛋白质的含氮量约为16%,测出含氮量则可推知蛋白含量。生物材料总氮量的测定,通常采用微量凯氏定氮法。凯氏定氮法由于具有测定准确度高,可测定各种不同形态样品等两大优点,因而被公认为是测定食品、饲料、种子、生物制品、药品中蛋白质含量的标准分析方法

‘柒’ =测定蛋白质分子量的主要方法有哪些简述其原理(列举三种)

知道蛋白质分子量、氨基酸组成计算器
http://www.proteomics.com.cn/tools/mwcal/

一般的方法:
SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量

[原理]

十二烷基硫酸钠(Sodium dodecyl sulfate, 简称SDS)-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量,是六十年代末Weber和Osborn在Shapiro等人在实验基础上发展起来的一项新技术。用这种方法测定蛋白质的分子量具有快速灵便,设备简单等优点。

蛋白质的电泳迁移率在一般的电泳方法中,主要取决于它在某PH下所带的净电荷量、分子大小(即分子量)和形状的差异性,而SDS-聚丙烯酰胺凝胶电泳对大多数蛋白质,主要取决于它们的分子量,与原有的电荷量和形状无关。

SDS是一种阴离子表面活性剂,在一定的条件下,它能打开蛋白质氢键和疏水键,并按比例地结合到这些蛋白质分子上形成带负电荷的蛋白质-SDS复合物,每克蛋白质一般结合1.4克SDS。SDS与蛋白质的定比结合使蛋白质-SDS复合物均带上相同的负电荷,其量远远超过蛋白质原有的电荷量,因而掩盖了蛋白质间原有的电荷差异。在水溶液中,蛋白质-SDS复合物具有相同的构象,近似雪茄烟形的长椭园棒(短轴均为1.8nm,长轴则随蛋白质的分子量成正比变化),克服了蛋白质间原有的形状差异。这样蛋白质-SDS复合物在凝胶中的迁移率不再受原有电荷和形状的影响,而只是蛋白质分子量的函数。蛋白质分子量与电泳迁移率间的关系可用下式表示:

lgMr = K – bm

式中 Mr为分子量;K为常数;b为斜率;m为迁移率。

因此,用本法测定蛋白质的分子量只需根据待测蛋白质在已知分子量的标准蛋白质的lgMr~迁移率的图中的位置,就能得知分子量。

用本法测得的分子量,除单链蛋白质外,均不是天然蛋白质的完整分子量,而是组成这些蛋白质的亚基或肽链的分子量。本法对一些电荷异常,或构象异常,或带有大辅基的蛋白质不适用,如组蛋白F1和某些糖蛋白等。对一些结构蛋白如胶原蛋白等也不适用。

SDS-聚丙烯酰胺凝胶电泳按照凝胶电泳系统中的缓冲液、pH值和凝胶孔径的差异可分为SDS-连续系统电泳和 SDS-不连续系统电泳两类;按照所制成的凝胶形状和电泳方式又可以分为SDS-聚丙烯酰胺凝胶垂直管型电泳和SDS-聚丙烯酰胺凝胶垂直板型电泳两类。

本实验采用SDS-不连续垂直板型操作方法。通过实验使学生掌握SDS-聚丙烯酰胺凝胶垂直板式电泳的原理及技术,包括制胶、灌胶、加样、剥胶及固定染色等,学会用这些方法测定蛋白质分子量。

[方法与步骤]

一、加样液的制备

1、标准蛋白质加样液的制备 称取细胞色素,胰凝乳蛋白酶原,胃蛋白酶,卵白蛋白,牛血清白蛋白各0.5~1mg,置小离心管(Eppendorf管)中,加入样品溶解液1mL,充分溶解,如有不溶物应离心除去。沸水浴热处理3min,冷却备用。

2、待测蛋白质加样液的制备

根据待测蛋白质样品存在的状况而定。

(1)固体

待测蛋白样品,如为无盐的纯蛋白质固体制剂,加样液的制备方法同标准蛋白质加样液的制备;如为含盐的纯蛋白质固体制剂,应先加水充分溶解,对透析缓冲液透析12~16h,然后吸取0.5mL(蛋白浓度应为0.5~1mg/mL),置Eppendorf管中,并加入等体积浓样品溶解液,沸水浴热处理3min,冷却备用。

(2)液体

待测蛋白样品,如为无盐的纯蛋白质液体制剂,则加入等体积浓样品溶解液,然后热处理;如为含盐的液体制剂,则需先透析。

二、凝胶的制备

1、凝胶板的准备

(1)洗板

将洗洁精用温水稀释后,用它浸透海绵擦洗玻板,然后用自来水洗净,再用酒精将板擦干。

(2)安装制胶板

制胶前将玻板与塑料嵌条和凹型陶瓷板的边缘对齐,下沿用密封胶带封口,用塑料夹子或铁夹子将两端夹好,注意要确保密封,安放在固定架上。

2、分离胶和浓缩胶溶液的配制

组 分
分离胶/mL
浓缩胶/mL

凝胶贮备液
2.5
0.26

分离胶缓冲液(pH8.8)
1.9


浓缩胶缓冲液(pH6.8)

0.5

10%SDS
0.075
0.02

TEMED
0.026
0.02

双蒸水
3.05
1.22

10%过硫酸铵
0.013
0.02

总体积
7.6
2

注意:①最后加入10%过硫酸铵溶液,混合制成凝胶液,迅速灌制凝胶。

②丙烯酰胺和甲叉双丙烯酰胺均为神经毒剂,对皮肤有刺激作用。因此必须小心操作,不得吸入和接触皮肤,聚合完全聚丙烯酰胺凝胶无毒。

3、制分离胶

将制胶板垂直放好,插上与相应厚度的样品梳,在梳子下缘线1cm处做标记,卸下样品梳。将配好的分离胶溶液缓慢加入制胶板之间,直至液面达到标记处。用滴管贴近胶液界面小心而又缓慢地覆盖厚度约0.5cm的正丁醇层,以防止溶液蒸发并保证胶面平整。

4、制浓缩胶

分离胶聚合后,倒去正丁醇,用蒸馏水冲洗分离胶胶面两次,用滤纸吸去残液。用滴管将浓缩胶溶液加在分离胶面上,充满制胶板,插入样品梳。

(三)电泳

1、安装电泳槽

浓缩胶聚合后,除去梳子、密封胶带以及六个铁夹。将制胶扳、电泳糟内芯、另一对制胶板依次放入槽内。两制胶板的凹型陶瓷板均应与电泳槽内芯接触。然后插入楔型板以固定两套制胶板。如果每次电泳只用一块胶板,必须用提供的有机玻璃板代替另一套制胶板。

2、加样

在内外水槽加注缓冲液,使内外槽的水位均超过凹形板的缺口但低于塑料板的上沿。用微量加样器在梳井内加样。

3、电泳

盖好上盖,在80V~100V的电压下电泳约3h,至溴酚蓝指示的电泳前沿到达制胶板的下缘止,关掉电源。然后拔掉楔形板,取下制胶扳。

(四)染色、脱色

用刀片或薄板将白塑料板与陶瓷板轻轻撬开,用刀片沿分离胶与浓缩胶的交接处,将分离胶切下,并在分离胶的左上角切掉一小角,以标记样品顺序。然后手戴橡胶手套将分离胶小心移入染色器皿中。在染色器皿中加入100mL考马氏亮蓝染液(含0.25%考马氏亮蓝R-250,30%乙醇,10%乙酸的水溶液),加盖,在摇床上染色2h。

将染液倒回贮存瓶(可反复使用)。在染色皿中加入100mL脱色液(10%乙酸,30%乙醇),振荡脱色至蛋白条带清晰。

[结果和计算]

1、凝胶脱尽底色后,色带清晰显出。按实样描下或摄下电泳图谱。

2、根据各蛋白迁移距离和染料迁移距离的比值,求出各蛋白的相对迁移率mr,然后作出lgMr~mr关系图,从图中找出未知蛋白mr对应的分子量。参考资料:http://jpkc.ecust.e.cn/17/experiment/exp/dy_2.htm

‘捌’ 蛋白浓度测定的方法具体有哪些

蛋白浓度测定的方法:

1. 紫外分光光度法

紫外光谱吸收法测定蛋白质含量是讲蛋白质溶液直接在紫外分光光度计中测定的方法,不需要任何试剂,操作简单且易回收。蛋白质溶液在280nm附近有强烈的吸收,这是由于蛋白质中酪氨酸、色氨酸残基而引起的,所以光密度受这两种氨基酸含量的支配。另外核蛋白或提取过程中杂有的核酸对测定结果引起极大误差,其最大吸收在260nm。所以同时测定280及260nm两种波长的吸光度,通过计算可得较为正确的蛋白质含量。

2. 双缩脲法

利用半饱和硫酸铵或27.8%硫酸钠——亚硫酸钠可使血清球蛋白沉淀下来,而此时血清白蛋白仍处于溶解状态,因此可把两者分开,这种利用不同浓度的中性盐分离蛋白的方法称为盐方法。盐析分离蛋白质的方法不仅用于临床医学,而且还广泛地用于生物化学研究工作中,如一些特殊蛋白质—酶、蛋白激素等的分离和纯化。

蛋白质和双缩脲一样,在碱性溶液中能与铜离子形成紫色络合物(双缩脲反应),且其呈色深浅与蛋白质的含量成正比,因此可于蛋白质的定量测定。

但必须注意,此反应并非蛋白质所特有,凡分子内有两个或两个以上的肽键的化合物以及分子内有—CH2—NH2等结构化合物,双缩脲反应也呈阳性。本实验用27.8%硫酸钠—亚硫酸钠溶液稀释血清,取出一部分用双缩脲反应测定蛋白质的含量,剩余部分则用滤纸过滤,使析出的球蛋白与白蛋白分离,取出滤液用同一反应测定白蛋白的含量。总蛋白与白蛋白含量之差即球蛋白的含量。白蛋白与球蛋白之比即所谓的白/球比值。

3. Folin-酚试剂法

目前实验室较多用Folin-酚法测定蛋白质含量,此法的特点是灵敏度高,较双缩脲高两个数量级,较紫外法略高,操作稍微麻烦,反应约在15分钟有最大显色,并最少可稳定几个小时,其不足之处是干扰因素较多,有较多种类的物质都会影响测定结果的准确性。其原理是蛋白质中含有酚基的酪氨酸,可与酚试剂中的磷钼钨酸作用产生兰色化合物,颜色深浅与蛋白含量成正比。

4. 考马氏亮蓝G-250

此方法是1976年Bradform建立。染料结合法测定蛋白质的优点是灵敏度较高,可检测到微量蛋白,操作简便、快迅,试剂配制极简单,重复性好,但干扰因素多。考马氏亮蓝G-250具有红色和青色两种色调、在酸性溶液中游离状度下为棕红色,当它通过疏水作用与蛋白质结合后,变成蓝色,最大吸收波长从465nm转移到595nm处,在一定的范围内,蛋白质含量与 595nm的吸光度成正比,测定595nm处光密度值的增加即可进行蛋白质的定量。

以上便是实验室中常见的几种蛋白浓度测定的方法,另外还有凯氏定氮法和BCA法,有凯氏定氮法结果最精确,但操作复杂,BCA法又以其试剂稳定,抗干扰能力较强,结果稳定,灵敏度高而受到欢迎。

‘玖’ 如何准确测定样品中蛋白质的含量

5种方法测定蛋白质含量

一、微量凯氏(kjeldahl)定氮法

样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

二、双缩脲法(biuret法)

1、实验原理

双缩脲是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与硫酸铜形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

2、试剂与器材

(1)试剂:a、标准蛋白质溶液:用标准的结晶牛血清清蛋白或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用0.9%nacl配制,酪蛋白用0.05n nach配制。

b、双缩脲试剂:称以1.50克硫酸铜和6.0克酒石酸钾钠,用500毫升水溶解,在搅拌下加入300毫升10% naoh溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。

(2)器材: 可见光分光光度计、大试管15支、旋涡混合器等。

3、操作方法

(1)标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。

用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。

(2)样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。

三、folin—酚试剂法(lowry法)

1、实验原理

这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。

这两种显色反应产生深兰色的原因是:在碱性条件下,蛋白质中的肽键与铜结合生成复合物。folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。

在一定的条件下,兰色深度与蛋白的量成正比。 folin—酚试剂法最早由lowry确定了蛋白质浓度测定的基本步骤。以后在生物化学领域得到广泛的应用。这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。

对双缩脲反应发生干扰的离子,同样容易干扰lowry反应。而且对后者的影响还要大得多。酚类、柠檬酸、硫酸铵、tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。

浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。

含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。

进行测定时,加folin—酚试剂时要特别小心,因为该试剂仅在酸性ph条件下稳定,但上述还原反应只在ph=10的情况下发生,故当folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂被破坏之前,还原反应即能发生。

此法也适用于酪氨酸和色氨酸的定量测定。 此法可检测的最低蛋白质量达5mg。通常测定范围是20~250mg。

2、试剂与器材

(1)试剂

a、试剂甲: (a)10克碳酸钠,2克 naoh和0.25克酒石酸钾钠 。溶解于500毫升蒸馏水中。 (b)0.5克硫酸铜溶解于100毫升蒸馏水中,每次使用前,将50份(a)与1份(b)混合,即为试剂甲。

b、试剂乙:在2升磨口回流瓶中,加入100克钨酸钠,25克钼酸钠及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫酸锂,50毫升蒸馏水及数滴液体溴,

开口继续沸腾15分钟,以便驱除过量的溴。冷却后溶液呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。稀释至1升,过滤,滤液置于棕色试剂瓶中保存。使用时用标准nach滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1n左右。

c、标准蛋白质溶液: 精确称取结晶牛血清清蛋白或球蛋白,溶于蒸馏水,浓度为250mg/ml左右。牛血清清蛋白溶于水若混浊,可改用0.9%nacl溶液。

(2)器材

a、可见光分光光度计

b、旋涡混合器

c、秒表

d、试管16支

3、操作方法

(1)标准曲线的测定:取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250mg/ml)。用水补足到1.0毫升,

然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。再逐管加入0.5毫升试剂乙(folin—酚试剂),同样立即混匀。

这一步混合速度要快,否则会使显色程度减弱。然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。

注意:因lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。

全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。

每分钟测一个样品。 进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。

folin—酚试剂法实验表 管号 1 2 3 4 5 6 7 8 9 10 标准蛋白质 0 0.1 0.2 0.4 0.6 0.8 1.0 (250mg/ml) 未知蛋白质 0.2 0.4 0.6 (约250mg/ml)

蒸馏水 1.0 0.9 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4 试剂甲 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 试剂乙 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 每管中蛋白质的量(mg) 吸光度值(a700)

(2)样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。

通常样品的测定也可与标准曲线的测定放在一起,同时进行。即在标准曲线测定的各试管后面,再增加3个试管。如上表中的8、9、10试管。

根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。

注意:由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。

四、改良的简易folin—酚试剂法

1、试剂

(1)试剂甲:碱性铜试剂溶液中,含0.5n 氯化钠、10%碳酸钠、0.1%酒石酸钾和0.05%硫酸铜,配制时注意硫酸铜用少量蒸馏水溶解后,最后加入。

(2)试剂乙:与前面的基本法相同。临用时加蒸馏水稀释8倍。

(3)标准蛋白质溶液:同基本法。

2、操作步骤 测定标准曲线与样品溶液的操作方法与基本法相同。只是试剂甲改为1毫升,室温放置10分钟后,试剂乙改为4毫升。在55℃恒温水浴中保温5分钟。

用流动水冷却后,在660nm下测定其吸光度值。 改良的快速简易法,可获得与 folin—酚试剂法(即lowry基本法)相接近的结果。

五、考马斯亮兰法(bradford法)

1、实验原理 双缩脲法(biuret法)和folin—酚试剂法(lowry法)的明显缺点和许多限制,促使科学家们去寻找更好的蛋白质溶液测定的方法。

1976年由bradford建立的考马斯亮兰法(bradford法),是根据蛋白质与染料相结合的原理设计的。这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。

这一方法是目前灵敏度最高的蛋白质测定法。 考马斯亮兰g-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由465nm变为595nm,溶液的颜色也由棕黑色变为兰色。

经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。 在595nm下测定的吸光度值a595,与蛋白质浓度成正比。

2、试剂与器材

(1)试剂:

a、标准蛋白质溶液,用球蛋白或牛血清清蛋白,配制成1.0mg/ml和0.1mg/ml的标准蛋白质溶液。

b、考马斯亮兰g—250染料试剂:称100mg考马斯亮兰g—250,溶于50ml 95%的乙醇后,再加入120ml 85%的磷酸,用水稀释至1升。

(2)器材:

a、可见光分光光度计

b、旋涡混合器

c、试管16支

3、操作方法

(1)标准方法

a、取16支试管,1支作空白,3支留作未知样品,其余试管分为两组按表中顺序,分别加入样品、水和试剂,即用1.0mg/ml的标准蛋白质溶液给各试管分别加入:0、0.01、0.02、0.04、0.06、0.08、0.1ml,然后用无离子水补充到0.1ml。

最后各试管中分别加入5.0ml考马斯亮兰g—250试剂,每加完一管,立即在旋涡混合器上混合(注意不要太剧烈,以免产生大量气泡而难于消除)。未知样品的加样量见下表中的第8、9、10管。

b、加完试剂2-5分钟后,即可开始用比色皿,在分光光度计上测定各样品在595nm处的光吸收值a595,空白对照为第1号试管,即0.1ml水加5.0mg—250试剂。

注意:不可使用石英比色皿(因不易洗去染色),可用塑料或玻璃比色皿,使用后立即用少量95%的乙醇荡洗,以洗去染色。塑料比色皿决不可用乙醇或丙酮长时间浸泡。

考马斯亮兰法实验表管号 1 2 3 4 5 6 7 8 9 10 标准蛋白质 0 0.01 0.02 0.04 0.06 0.08 0.10 (1.0mg/ml) 未知蛋白质 0.02 0.04 0.06 (约1.0mg/ml)

蒸馏水 0.1 0.09 0.08 0.06 0.04 0.02 0 0.08 0.06 0.04 考马斯亮蓝 g-250试剂 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 每管中的蛋 白质量(mg) 光吸收值 (a595)

c、用标准蛋白质量(mg)为横座标,用吸光度值a595为纵座标,作图,即得到一条标准曲线。由此标准曲线,根据测出的未知样品的a595值,即可查出未知样品的蛋白质含量。 0.5mg牛血清蛋白/ml溶液的a595约为0.50。

(2)微量法 当样品中蛋白质浓度较稀时(10-100mg/ml),可将取样量(包括补加的水)加大到0.5ml或1.0ml, 空白对照则分别为0.5ml或1.0ml水,考马斯亮蓝g-250试剂仍加5.0ml,同时作相应的标准曲线,测定595nm的光吸收值。 0.05mg牛血清蛋白/ml溶液的a595约为0.29。

‘拾’ 蛋白质含量测定的标准方法

测定蛋白质的方法可分为两大类:一类是利用蛋白质的共性,即含氮量、肽键和折射率测定蛋白质含量;另一类是利用蛋白质中特定氨基酸残基、酸性和碱性基团以及芳香基团等测定蛋白质含量。常见的方法有:凯氏定氮法、双缩脲法、酚试剂法及紫外吸收法。
1.凯氏定氮法
准备4个50mL凯氏烧瓶并标号,想1、2号烧瓶中加入定量的蛋白质样品,另外两个烧瓶作为对照,在每个烧瓶中加入硫酸钾-硫酸铜混合物,再加入浓硫酸,将4个烧瓶放到消化架上进行消化,之后进行蒸馏,全部蒸馏完毕后用标准盐酸滴定各烧瓶中收集的氨量,直至指示剂混合液由绿色变回淡紫红色,即为滴定终点,结算出蛋白质含量。
2.双缩脲法
双缩脲法是第一个用比色法测定蛋白质浓度的方法,硫铵不干扰显色, Cu2+与蛋白质的肽键,以及酪氨酸残基络合,形成紫蓝色络合物,此物在540nm波长处有最大吸收。首先利用标准蛋白溶液和双缩脲试剂绘制标准曲线,将待测血清与硫酸钠在待测试管中混合,并用只加入硫酸钠不含血清的试管作为对照,将两支试管加入等量的双缩脲试剂,充分混合后于37℃环境中放置10分钟,在540nm波长进行比色,以对照管调零,读取吸光度值,由标准曲线上直接查出蛋白质含量。双缩脲法常用于0.5g/L~10g/L含量的蛋白质溶液测定。
3.酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值
4.紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。

阅读全文

与蛋白液比重测量方法相关的资料

热点内容
骑固定自行车减肥的最佳方法 浏览:582
中学生过敏了怎么办最快方法 浏览:486
常用的舞蹈教学方法有哪些 浏览:837
肾果食用方法 浏览:1
游泳池尿素检测方法 浏览:953
鹅咳嗽怎么治疗方法 浏览:843
如何改变晨练方法 浏览:139
解决问题最有力的方法 浏览:514
海洋油污常用处理方法 浏览:353
黄斑区前膜治疗方法 浏览:483
导尿管的使用方法 浏览:426
从化区农业公司注册方法有哪些 浏览:33
2倍褶窗帘四爪钩安装方法 浏览:2
婴儿治疗便秘方法 浏览:443
四种常用构图方法 浏览:753
男士脱发自行治疗方法 浏览:382
如何用最简单的方法做拼图 浏览:659
奥迪q4l蓝牙连接方法 浏览:179
心理学的研究方法有哪四种 浏览:641
食用菌硫磺消毒使用方法 浏览:24