导航:首页 > 安装方法 > 抛物面天线测量方法

抛物面天线测量方法

发布时间:2022-02-14 23:04:36

如何测量标高详细公式是什么叫高程

方法一:

用水准仪,先对后视读数,也就是把塔尺放在已知高程的水准点上,读出读数(记为后视读数);再把塔尺放在要测的点上,读出读数(记为前视读数)。公式为:后视点的高程+后视读数-前视读数=你要测的那个点的高程

方法二:

用全站仪,不同的是要在测量的时候就要设定好仪高和棱镜高,然后同样地测量后视读数和前视读数。公式为:后视点高程-后视读数+前视读数。

高程:地面上某点到某一水平面的垂直距离。分绝对高程(即海拔)和假定高程(离假定水平面的垂直距离,即相对高度)。

(1)抛物面天线测量方法扩展阅读:

测量高程通常采用的方法有:水准测量、三角高程测量和气压高程测量。[1]偶尔也采用的流体静力水准测量方法,主要用于越过海峡传递高程。例如欧洲水准网中,包括英法之间,以及丹麦和瑞典之间的流体静力水准联测路线。

①水准测量是测定两点间高差的主要方法,也是最精密的方法,主要用于建立国家或地区的高程控制网。

②三角高程测量是确定两点间高差的简便方法,不受地形条件限制,传递高程迅速,但精度低于水准测量。主要用于传算大地点高程。

③气压高程测量是根据大气压力随高度变化的规律,用气压计测定两点的气压差,推算高程的方法。

精度低于水准测量、三角高程测量,主要用于丘陵地和山区的勘测工作。

标高按基准面选取的不同分为绝对标高和相对标高。

1 绝对标高

绝对标高:是以一个国家或地区统一规定的基准面作为零点的标高,我国规定以青岛附近黄海夏季的平均海平面作为标高的零点;所计算的标高称为绝对标高。除总平面外,一般采用相对标高,即把底层室外的地坪作为相对标高的零点。

2 相对标高

相对标高:以建筑物室内首层主要地面高度为零作为标高的起点,所计算的标高称为相对标高。

①建筑标高

建筑标高:在相对标高中,凡是包括装饰层厚度的标高,称为建筑标高,注写在构件的装饰层面上。

②结构标高结构标高:在相对标高中,凡是不包括装饰层厚度的标高,称为结构标高,注写在构件的底部,是构件的安装或施工高度。结构标高分为结构底标高和结构顶标高。

一般在建筑施工图中标注建筑标高(但屋顶平面图中常标注结构标高),在结构施工图中标注结构标高。

注意事项:

(1)总平面图室外整平地面标高符号为涂黑的等腰直角三角形,标高数字注写在符号的右侧、上方或右上方。

(2)底层平面图中室内主要地面的零点标高注写为±0.000。低于零点标高的为负标高,标高数字前加“-”号,如-0.450。高于零点标高的为正标高,标高数字前可省略“+”号,如3.000。

(3)在标准层平面图中,同一位置可同时标注几个标高。

(4)标高符号的尖端应指至被标注的高度位置,尖端可向上,也可向下。

(5)标高的单位:米。

❷ 天线参量测量的近场测量

对于射电天文、雷达设备等应用的大口径天线,测量时很难满足所需的最小距离。如天线口径 100米,工作波长10厘米,测试距 ,这样大的测试场地事实上是无法办到的。还由于地球表面曲率的影响,为使电磁波不为球形地球表面所遮挡,收发天线的高度也将达到不现实的程度。对这样的大天线,其参量的测量通常有两种方法,即利用射电星的测量技术和近场测量技术。
射电星测量技术就是利用辐射稳定的射电星作为发射源,被测天线用于接收。这样就可保证收发间距离远大于最小测试距离。
近场测量技术是在天线附近(距天线表面仅几个焦距的距离范围内)测量远区的天线参量。近场测量技术包括缩距法、聚焦法和外推解析法。
①缩距法:利用特定的信号发射天线,使收发天线之间的距离减少后,仍能保证发射天线在接收天线口径处产生如同远距离时一样的平面波。一般的发射天线在其附近产生的是球面波。为把球面波校正为平面波,可用附加的透镜或抛物面反射器等。
②聚焦法:调整被测天线,使如抛物面反射器天线、透镜天线、相控阵天线等有聚焦特性的天线,原来对无穷远处的聚焦改变为聚焦于近场区(几个焦距或几十个波长的距离内),然后在焦区测取其方向图。使天线聚焦于近场区的方法是:对抛物面反射器天线可把馈源从焦点沿轴外移一小段距离;对透镜天线可把馈源安装在一个焦距到两个焦距的范围内;对相控阵天线则可通过适当调整其移相器而达到。
③外推解析法:先测得天线口径上的场分布或天线导体表面上的电流分布,然后用解析的方法算出远区场分布,即天线的远区方向图。

❸ 卫星天线的仰角和方位角如何测量

本问题举例进行说明:

周口市的地理位置是东经114°38′,北纬33°37′,亚洲3S卫星轨道位置是东经10°55′。天线仰角是指抛物面天线中心MN与水平线OM之间的夹角H(如图)。天线方位角是指:从接收点的正北方向开始,顺时针方向至天线中心线在水平面上正投影线的角度。根据以下公式:

z为天线所指卫星的径度;

x为地面站径度;

φ为地面站纬度;

R为地球半径,R=6378km。

h为卫星高度,h=35786km。

R/(R+h)=42164km。

经计算得出周口市接收亚洲3S卫星的天线仰角为50°34′,方位角南偏162°。

(3)抛物面天线测量方法扩展阅读

接收天线调整

天线方位角及仰角的调整:

调整天线的仰角及方位角,这里介绍两种行之有效的方法:相对值法与绝对值法。

①相对值法:此法是先计算出接收当前卫星与接收预收卫星时天线仰角与方位角的差值,然后对天线进行相应的调整。举例来说,在武汉市调整原接收中星五号(115.5°E)的天线至接收亚太1A号(134°E),天线的方位角及仰角分别为:

中星五号 AZ=177.6°;EL=54.3°

亚太1A号 AZ=144.9°;EL=48.3°

显然方位角应减少即向东转177.6°-144.9°=32. 7°,仰角应下调54.3°-48.3°=6.0°。

由于在调整中是取相对值进行的,测量位置本身的偏差在计算中已经被消除了,因此对罗盘的测量位置要求不高,只要保持测量位置不变即可。此法较适合于天线换星操作和偏馈天线。

②绝对值法:此法只需计算出天线最终仰角及方位角,而无需考虑当前状态。以罗盘读数作参考也能较快将天线调至所需位置,但在使用罗盘时一定要严格选择测量位置,尽量减小由于测量位置选择不当引起的误差。

这两种方法各有优缺点,可根据具体情况选择使用或结合使用。

天线仰角及方位角的调整对于接收C波段模拟电视信号或许不算太困难,但对于接收数字电视信号特别是Ku波段电视信号就没有那么简单。笔者建议务必按以下步骤进行,除非条件不具备。

首先接收该卫星上C波段模拟电视信号,以求将天线大致对准卫星,在多数情况下这一条件都能得到满足。

其次接收C波段数字电视信号或者改换Ku波段高频头接收该波段模拟电视信号,这一条件不一定能满足。

最后接收Ku波段数字电视信号。有些Ku波段天线不能换C波段高频头,但也应尽可能从第二步做起 。

微调

经过以上几个步骤,大多数情况下是能收到卫星信号的,但接收效果不一定理想,为此必须进行微调。

仰角、方位角的微调:反复微调仰角及方位角,注意监视器上图像、伴音的变化情况,直到图像、伴音信号达到最佳状态。在微调期间,一定要注意分清天线的主瓣和旁瓣,以主瓣接收信号,收视效果明显要优于旁瓣。

馈源及极化的调整:完成仰角及方位角的微调后应将其稍微固定,然后适当移动馈源的位置,调整焦距。同时由于我国卫星广播采用线极化方式传送,因此务必对极化进行细心的调整。最终的目标是使模拟接收机的输入信号电平最强,数字接收机的误码率最低,以保证监视器上信号最佳。

调试完毕后,整个卫星接收系统已处于最佳工作状态,可将馈源、极化器、仰角和方位角等固定好 。

❹ 天线测量的主要参数

大家都知道,没有夭线也就没有无线电通信。那么,天线为什么能发射(接收)无线电波呢这需要从两根导线上的感应电流说起。当距离很近的两根导线上有交变电流流动时(见图1一25A) ,导线上的感应电流大小相等、方向相反,电场被束缚在两导线之间,线外几乎没有辐射;如果把两根导线张开(见图I一25B),一部分电场能够散播在周围空间。当导线的长度L增大到可与波长相比时,导线上的电流将大大增加,因而就能形成较强的辐射(见图1一25C)。由此可知,两根导线辐射无线电波的能力是与导线的长度和形状有关的。以上是从发射角度来讲述天线的工作原理,根据互易原理。接收天线的工作过程只不过是把发射的过程反过来罢了。 在上面两根张开导线辐射无线电波例子中,两臂长度相等的振子叫对称振子。这是很经典的、迄今使用最广泛的一种天线。当每臂长度为1/4波长(全长为1/2波长)的振子.称半波对称振子。单个半波对称振子,可单独地使用,也可作为抛物面天线的馈源,还可采用多个半波对称振子组成天线阵。移动通信宏基站中常用的板状天线,其实盒子里面就是由多个半波对称振子组成的天线阵列。 天线增益—是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上能保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大收信电平的富余量。表征天线增益的参数有dRd和dBia dBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称振子天线的增益dBi = dBd千2. 15。相同的条件下,增益越高,电波传播的距离越远。一般 GSM定向基站的天线增益约为18dBi,全向的约为lldBio 如何把全向天线变成定向天线,要靠改变天线结构来实现。通常采用增加反射板的办法。平面反射板放在振子的一边就构成扇形区域的覆盖天线(见图1 -26)。图中也表明了反射板的作用既能把功率反射到单侧方向.也能提高天线的增益。为了进一步改进性能,提高天线增益,反射板还可以做成抛物反射面,使天线的辐射像光学中的探照灯那样.把能量集中到一个小立体角内,从而获得更高的增益。 为了提高天线的增益,通常将两个半波振子增加为4个,乃至8个。4个半波振子排成一个垂直放置的直线阵时,其增益约为8dB;一侧再加有一个反射板就构成四元式直线阵,也就是最常规的板状天线,其增益约14一17dB。同样的八元式直线阵,即加长型板状天线,其增益16一19dB。当然,加长型板状天线的长度也要增加许多,为常规板状天线的1倍,达2.4m左右(见图1一27)。 方向图也是天线的一个重要参数。发射夭线的基本功能之一是把从馈线取得的能量向周围空间辐射出去;之二是把大部分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(见图I -28A)。立体方向图立体感强,容易理解见图I -28B与图1 -28C)。从图1一28B可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而图I一28C显示,在水平面上各个方向的辐射是一样大的。 通过若干个对称振子组,产生“扁平的面包圈”,把信号进一步集中到水平面方向上,以加强对目标覆盖区域的辐射控制。由4个半波对称振子沿垂线上下排列构成一个天线振子组后,其立体方向图和垂直面方向图见图1 - 29。由此可知,设在居民小区的移动通信基站,其天线主要向水平方向发射电波,架设在楼顶上的天线是不会向下面的屋内辐射无线电波的。 波瓣宽度,这是天线常用的一个很重要的参数。天线方向图中辐射强度最大的瓣称为主瓣,主瓣外侧的称为副瓣(或旁瓣)。主瓣最大辐射方向上,辐射强度降低3dB两侧点的夹角称为波瓣宽度(又称半功率角),常以图形方式表示(见图1一30A)。波瓣宽度越窄,天线的方向性越好,作用距离越远,抗千扰能力越强。 天线的波瓣宽度可分水平面波瓣宽度和垂直平面波瓣宽度。天线垂直波瓣宽度一般与该天线所对应方向上的电波覆盖半径有关。通过对天线垂直度(俯仰角)在一定范围内的调节,可以达到改善小区覆盖质量的目的。垂直平面的半功率角有480, 330, 150, 8。几种。半功率角越小,信号偏离主波束方向时衰减越快,也就越容易通过调整天线倾角来准确控制扇区的覆盖范围。基站天线水平波瓣宽度有利于电波覆盖小区的交叠处理。半功率角度越大,在扇区交界处的覆盖越好。天线水平半功率角常见的有450, 600, 90”等。当提高天线垂直倾角时,水平半功率角过大,越容易发生波束畸变,形成越区覆盖;角度越小,扇区交界处覆盖就越差。一般在市中心的基站由于站距小,天线倾角大,通常多采用水平面的半功率角小的天线.在郊区则选用半功率角大的天线。

❺ 如何调试卫星天线(大锅)

卫星电视节目的接收,无论是现在使用的C波段,还是Ku波段,接收天线的主要形式都是抛物面天线。对于卫星天线的调试,它包括天线的方向(仰角和方位角)、馈源的位置、极化取向和极化倾斜角调整等数项内容(可根据相关材料查到所需信息)。调试天线一般在天线安装场地进行,首先要设置好卫星接收机接收电视信号的数据参数,连接好卫星接收天线上的LNB和卫星接收机、电视监视器的电缆,然后按照下面的步骤开始调整天线。
Ⅰ、天线的固定
将天线连同支架安装在天线座架上。天线的方位通常有一定的调整范围,应保证在接收方向的左右有足够的调整余地。对于具有方位度盘和俯仰度盘的天线,应使用权之方位度盘的0°与正北方向,俯仰度盘的0°与水平面保持一致。正北方向的确定,一般采用指北针测出地磁北极,再根据当地的磁偏角值进行修正,也可利用北极星或太阳确定。
较大的天线一般都采用分瓣包装运输,故在安装时,应将各部分重新组装起来。天线组装后,型面的误差、主面与副面之间的相对位置、馈源与副面的相对位置,均应用专用工具进行校验,保证误差在允许的范围内。校验完毕,应固紧螺栓。
天线馈源安装是否合理,对天线的增益影响极大。对于前馈天线,应合馈源的相位中心与抛物面焦点重合;对于后馈天线,应将馈源固定于抛物面顶部锥体的安装孔上,并调整副反射面的距离,使抛物面能聚焦于馈源相位中心上。天线的极化器安装于馈源之后。对于线极化(水平极化和垂直极化),应使馈源输出口的矩形波导窄边与极化方向平行;对于圆极化波(如历旋圆极化波),应使矩形导波口的两窄边垂直线与移相器内的螺钉或介质片所在平面相交成45°角的位置。
Ⅱ、天线方向的调整
确定正南方向。先由当地磁偏角年变值和参考年值(查表获得),计算当地当时的磁偏角(磁偏角=参考年值+年变值*年差),然后再用罗盘(或指南针)确定地磁南极方向,最后用计算的磁偏角,修正地磁南极,得到正南方向(正南=地磁南极+磁偏角)。另外,因为天线座架的实际指向一般都对着正南方向,帮可直接以天线座架的指向作参考,进行天线调整。
进行方向调试。天线方向的调试,具体地说就是根据事先算出的仰角和方位角,将天线的这两个角度分别调到这两个数值上,使之对准所要接收的卫星,接收到电视信号,这就是粗调。然后进行细调,使所收的信号最佳。粗调是基础,如何判断天线的仰角和方位角已调到事先所算出的角度上呢?根据现场的条件和个人的不同条情况,可以有多种简易而有效的方法。
1、方位角的调整
天线安装好以后,将高频头有标牌的一面水平朝上,然后利用指南针找到正南方向,并在天线的立柱上做好正南的标记。同时应了解要找的卫星方位角是正南的偏东或偏西多少度。然后找一皮尺测量立柱的周长为多少厘米,在用360度除以它,得到每厘米为多少度。然后再用方位角去除以每厘米对应的度数,也就是得到了需要转动多少厘米。即可将天线转动到附近位置。
2、仰角的调整

经简单计算与实践得出结论,仰角应为:将计算出的仰角减去20度的值(因为采用的不同天线误差在19度~22度之间)。然后将指南针放置,细调仰角使指针为计算出的差值(误差在正负1度之间),这一点是天线调试成败的关键。
下面我们简单介绍一种方法——量角器、垂线法:
用一个尺寸较大一点的量角器,稍作加工,即可制成一个方便实用的简易仰角测试器,不需作任何计算,仰角可直接随时读出(如图三所示),在量角器的圆心处小心地钻一小孔,将一根细线固定在此,在细线的另一端系一小重物,仰角测试器就做好了。使用时如前述几种方法一样,将其直边垂直地靠在圆盘平面上,并使量角器刻有0°的一端朝下。此时一边转动天线的仰角一边可以读出仰角值来。
3、极化角的调整
天线指向调整前,高频头馈源波导口极化角P预置方向应大致正确,待收到信号后再进行细调,一般只需根据经度差(经度差=卫星所在经度-接收点经度)正负,即可大致判断极化角正负,经度差为正时极化角也为正,经度差为负时极化角也为负,经度差绝对值越大极化角也越大。
根据资料可以知道极化角的参数。现将高频头上有一横线的标记对准天线支架上的0刻度线,人站在天线口的前面,当极化角大于零度时,高频头顺时针转动;当极化角小于零度时,高频头逆时针转动。
当接收水平极化信号时,馈源波导口窄边应平行于地面,根据经度差正负及其绝对值大小预置极化角P,待收到信号后再进行微调。当接收垂直极化信号时馈源波导口宽边应平行于地面,根据经度差正负及其绝对值大小预置极化角P。Ku波段通常采用馈源一体化高频头,为便于区别有的馈源一体化高频头在其端面有“Up”标志(英文“向上”),标有“Up”端面向上即为“水平极化”,旋转90°即为“垂直极化”。
在进行上述调整时,应一边缓慢转动天线,一边注意观察电视监视器的屏幕显示和卫星接收机的信号强度指示条,注意调整到信号最强的位置固定这一项调整位置。调整时应一个项目一个项目顺序进行,每调整好一个调整点就固定住它,调整顺序是:方位角——〉仰角——〉极化角,全部参数都整好后,最后将天线固定。
Ⅲ、高频头的安装与调整:
高频头的安装较为简单,将高频头的输入波导口与馈源或极化器输出波导口对齐,中间加密封橡胶垫圈,并用螺钉固紧。高频头的输出端与中频电缆线的播送相接拧紧,并敷上防水粘胶或橡皮防水套,加钢制防水保护管套效果更理想。
数字卫星电视接收时应用数码专用高频头(有的在高频头铭牌上注明“Digital”),由于不可避免的频偏和漂移,为使接收机工作在最佳状态应对高频头输出中频频率进行微调。先让它接收卫星上的模拟信号,并降低或升高频率(1?)MHz使噪声点最小、图像最佳,再转回进行数字台接收。避免使用劣质高频头,这是数字卫星接收质量的保证。

❻ 怎样判断使用卫星天线的大小

根据场强,中九只覆盖中国地区所以用很小的锅就能接收,而东南亚是没法收中九的因为信号覆盖不到,场强图可以去网上搜索,不过很多优质频道都是收费并且需要用它专门的接收机才能收看不像国内可以免费看50个左右的公益频道,所以你即使能收到信号也看不了节目。

❼ 天线方向特性)(专业的进)

1、阻抗特性

天线应能将高频电流能量尽可能多地转变为电磁波能量,这首先要求天线是一个良好的“电磁开放系统”,其次要求天线与发射机(源)匹配或与接收机(负载)匹配。

2、方向特性

天线应使电磁波尽可能集中于所需的方向上,或对所需方向的来波有最大的接收。

3、极化特性

天线应能发射或接收规定极化的电磁波。

4、带宽特性

天线应有足够的工作频带。

(7)抛物面天线测量方法扩展阅读:

天线方向原理:

天线是这样一个部件:将电路中的高频振荡电流或馈线上的导行波有效地转变为某种极化的空间电磁波,并保证电磁波按所需的方向传播(发射状态),或将来自空间特定方向的某种极化的电磁波有效地转变为电路中高频振荡电波或馈线上的导行波(接收状态)。

各种无线电设备对天线方向性的要求是千差万别的,例如精密测量雷达要求天线辐射的电磁波集中在极小的空间立体角内,称为“针状波束”;通信基站和电视发射台则要求电磁波在水平面内方向均匀辐射,即具有“全向性”,通常用方向图和一些有关参数来描述不同的方向性。

❽ 射电天文望远镜是怎样探测的.

射电望远镜(radio telescope)是指观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量。包括收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录、处理和显示系统等。

基本原理

经典射电望远镜的基本原理和光学反射望远镜相似,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚焦,因此,射电望远镜天线大多是抛物面。射电望远镜表面和一理想抛物面的均方误差如不大于λ/16~λ/10,该望远镜一般就能在波长大于λ的射电波段上有效地工作。对米波或长分米波观测,可以用金属网作镜面;而对厘米波和毫米波观测 ,则需用光滑精确的金属板(或镀膜)作镜面。从天体投射来并汇集到望远镜焦点的射电波,必须达到一定的功率电平,才能为接收机所检测。目前的检测技术水平要求最弱的电平一般应达 10 —20瓦。射频信号功率首先在焦点处放大10~1,000倍,并变换成较低频率(中频),然后用电缆将其传送至控制室,在那里再进一步放大、检波,最后以适于特定研究的方式进行记录、处理和显示。

天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度。

❾ 带抛物面和平面天线的雷达液位计适用有何不同

带抛物面天线的雷达相对于普通的喇叭口雷达接受的回波信号更强,更多,测量的精确度自然也更好,特别是一些颗粒比较大、粉尘比较强、吸波能力比较强的一些工况。

雷达液位计属于通用型雷达液位计,它基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆绳传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。

阅读全文

与抛物面天线测量方法相关的资料

热点内容
兰州学生健康码申请步骤方法 浏览:551
研究问题方法名词解释 浏览:386
吸顶摄像头安装方法 浏览:501
压缩隐形面膜使用方法 浏览:766
产成品的计算方法 浏览:606
有什么方法捉螃蟹 浏览:9
家庭干炒栗子最佳方法 浏览:185
桥架支架计算方法 浏览:45
痉挛痛有什么治愈方法 浏览:587
如何选好公司的方法 浏览:797
手机微信提示音在哪里设置方法 浏览:318
弹簧的简单表示方法 浏览:500
蒲公英的根功效与作用及食用方法 浏览:584
电锯生锈解决方法 浏览:67
疫情正确方法 浏览:343
fresh磨砂膏使用方法 浏览:617
如何筛选股票的4个方法 浏览:263
钢筋中间距的计算方法 浏览:460
腰机劳损怎么锻炼方法 浏览:702
如何解决心理问题的最有效方法 浏览:275