① 遥远的恒星与地球的距离是如何测定的
1. 三角视差法能够测量距离地球100光年之内的恒星。该方法通过观测地球绕太阳公转轨道直径两端的位置,并测量地球至恒星的视角,利用三角公式计算出恒星与地球的距离。
2. 对于更远的恒星,天文学家使用开普勒第三定律来计算距离。该定律表达了行星公转周期的平方与其轨道半长轴的立方成正比。通过观测直接得到公转周期,再结合已知数据,可以求解未知数,从而测定恒星距离。
3. 地球绕太阳公转产生的视运动为测定恒星距离提供了另一种方法。天文学家在地球位于不同位置时观测恒星,测量角度变化,从而计算出恒星与地球在不同时间的距离。尽管恒星极为遥远,但两段时间间隔的微小变化可以忽略不计。
4. 星团中恒星的平行轨道会聚现象是测定恒星距离的重要方法。天文学家观察星团中群星的平行轨道,发现它们都会聚到天上的某一点。这种会聚点提供了恒星的运动方向信息。结合多普勒效应测得的视向速度和恒星相对于遥远背景星的移动角速度,可以通过解三角形计算得出恒星距离。
5. 星团的距离也可以通过测定恒星光度和在赫罗图上的分布规律来计算。质量较小的恒星位于主序上,且满足主序星的颜色与光度对应关系。通过测量主序星的颜色,可以确定其光度,并与视亮度对比计算出恒星或星团的距离。
6. 总结来说,天文学家运用多种方法如三角视差法、分光视差法、星团视差法、统计视差法、造父视差法和力学视差法等,来测定恒星与地球的距离。这些方法共同构成了天文学家探索宇宙的基石。
② 宇宙恒星的距离是怎样测量的
三角视差法
河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:
sinπ=a/D
若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π
用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定。三角视差是一切天体距离测量的基础,至今用这种方法测量了约10000多颗恒星。
分光视差法
对于距离更遥远的恒星,比如距离超过110pc的恒星,由于周年视差非常小,无法用三角视差法测出。于是,又发展了另外一种比较方便的方法--分光视差法。该方法的核心是根据恒星的谱线强度去确定恒星的光度,知道了光度(绝对星等M),由观测得到的视星等(m)就可以得到距离。
m - M= -5 + 5logD.
移动星团法
这时我们要用运动学的方法来测量距离,运动学的方法在天文学中也叫移动星团法,根据它们的运动速度来确定距离。不过在用运动学方法时还必须假定移动星团中所有的恒星是以相等和平行的速度在银河系中移动的。在银河系之外的天体,运动学的方法也不能测定它们与地球之间的距离。
造父视差法(标准烛光法)
物理学中有一个关于光度、亮度和距离关系的公式。S∝L0/r2
测量出天体的光度L0和亮度S,然后利用这个公式就知道天体的距离r。光度和亮度的含义是不一样的,亮度是指我们所看到的发光体有多亮,这是我们在地球上可直接测量的。光度是指发光物体本身的发光本领,关键是设法知道它就能得到距离。天文学家勒维特发现“造父变星”,它们的光变周期与光度之间存在着确定的关系。于是可以通过测量它的光变周期来定出广度,再求出距离。如果银河系外的星系中有颗造父变星,那么我们就可以知道这个星系与我们之间的距离了。那些连其中有没有造父变星都无法观测到的更遥远星系,当然要另外想办法。
三角视差法和造父视差法是最常用的两种测距方法,前一支的尺度是几百光年,后一支是几百万光年。在中间地带则使用统计方法和间接方法。最大的量天尺是哈勃定律方法,尺度达100亿光年数量级。
哈勃定律方法
哈勃指出天体红移与距离有关:Z = Hd /c,这就是着名的哈勃定律,式中Z为红移量;c为光速;d为距离;H为哈勃常数,其值为50~80千米/(秒·兆秒差距)。根据这个定律,只要测出河外星系谱线的红移量Z,便可算出星系的距离D。用谱线红移法可以测定远达百亿光年计的距离。
1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。现代精确观测已证实这种线性正比关系
V = H0×d
其中v为退行速度,d为星系距离,H0=100h0km.s-1Mpc(h0的值为0<h0<1)为比例常数,称为哈勃常数。这就是着名的哈勃定律。
利用哈勃定律,可以先测得红移Δν/ν通过多普勒效应Δν/ν=V/C求出V,再求出d。
哈勃定律揭示宇宙是在不断膨胀的。这种膨胀是一种全空间的均匀膨胀。因此,在任何一点的观测者都会看到完全一样的膨胀,从任何一个星系来看,一切星系都以它为中心向四面散开,越远的星系间彼此散开的速度越大。
③ 恒星测距法的简介
天文学家利用三角视差法、分光视差法、星团视差法、统计视差法、造父视差法和力学视差法等,测定恒星与我们的距离。恒星距离的测定,对研究恒星的空间位置、求得恒星的光度和运动速度等,均有重要的意义。离太阳距离在16光年以内的有50多颗恒星。其中最近的是半人马座比邻星,距太阳约4.2光年,大约是40万亿千米。
目前,用三角视差法己测定了约10000颗恒星的距离,这些恒星视差角都不超过一角秒。更遥远的恒星视差角非常小,很难确定它们的距离,只有用其他方法来测定了。如分光视差法、星团视差法、统计视差法以及由造父变星的周期光度关系确定视差等。
如果地球不是绕太阳运动的,那么从地球上看同一个恒星就不会有方向上的差异。如果地球是绕太阳运动的,那么从地球上观测某一颗恒星时,由于地球在其轨道上位置的变化,就必然产生方向上的差异,也就一定会有视差出现,其实,它是相对于更远的恒星有位移。自从哥白尼提出日心地动学说以后,许多人企图观测恒星的视差,以此来证名哥白尼学说是否正确。但是,自哥白尼提出“日心地动”说以后300年间,没有人测出恒星的周年视差。因此,有人开始怀疑哥白尼学说是否正确。直到1837年—1839年,几位天文学家终于测出了恒星周年视差,这不仅建立了测量恒星距离的方法,同时也使哥白尼学说建立在更科学的基础上。
④ 地球到其他星体的距离是如何测算出来的
1. 科学家通过观测遥远天体的距离,使用的主要工具是望远镜。
2. 地月距离的测量较为简单,可以直接利用电磁波测距,因为二者距离很近。
3. 对于较近的恒星,科学家使用恒星视差法来测量其距离,这种方法的适用范围是100秒差距内,即326光年以内。
4. 光谱视差法适用于测量数百万光年乃至一千万光年以内的天体距离。通过观察恒星的颜色和其在赫罗图中的位置,可以确定其绝对星等,从而计算出距离。
5. 造父变星是一种特殊的恒星,其亮度会随时间周期性地变化。通过这种变化,可以测量5000万光年之内的距离。
6. 对于更为遥远的天体,科学家可以利用超新星测距方法。通过比较超新星爆发时的实际亮度和理论最大亮度,可以计算出其距离,测量范围可达数十亿光年。
7. 哈勃定律是用于测量遥远星系距离的方法。通过观测星系的红移值,可以计算出其远离我们的速度,进而得知其距离。
8. 宇宙中的天体主要是星系,因为单个恒星的发光能力不足以跨越如此遥远的距离被我们看到。天文学家的测量结果有大量的观测数据和理论支持。
⑤ 恒星的大小和远近就怎么测量出来的
由于恒星距离我们非常遥远,它们的距离测定非常困难。对不同远近的恒星,要用不同的方法测定。目前,已有很多种测定恒星距离的方法:三角视差法,分光视差法,分光视差法,造父周光关系测距法,谱线红移测距法
河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D
若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π
用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定。三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星。
天文学上的距离单位除天文单位(AU)、秒差距(pc)外,还有光年(ly),即光在真空中一年所走过的距离,相当94605亿千米。三种距离单位的关系是:
1秒差距(pc)=206265天文单位(AU)=3.26光年=3.09×1013千米
1光年(1y)=0.307秒差距(pc)=63240天文单位(Au)=0.95×1013千米。
对于距离更遥远的恒星,比如距离超过110pc的恒星,由于周年视差非常小,无法用三角视差法测出。于是,又发展了另外一种比较方便的方法--分光视差法。该方法的核心是根据恒星的谱线强度去确定恒星的光度,知道了光度(绝对星等M),由观测得到的视星等(m)就可以得到距离。
m - M= -5 + 5logD.
大质量的恒星,当演化到晚期时,会呈现出不稳定的脉动现象,形成脉动变星。在这些脉动变星中,有一类脉动周期非常规则,中文名叫造父。造父是中国古代的星官名称。仙王座δ星中有一颗名为造父一,它是一颗亮度会发生变化的“变星”。变星的光变原因很多。造父一属于脉动变星一类。当它的星体膨胀时就显得亮些,体积缩小时就显得暗些。造父一的这种亮度变化很有规律,它的变化周期是5天8小时46分38秒钟,称为“光变周期”。在恒星世界里,凡跟造父一有相同变化的变星,统称“造父变星”。
1912 年美国一位女天文学家勒维特(Leavitt 1868--1921)研究小麦哲伦星系内的造父变星的星等与光变周期时发现:光变周期越长的恒星,其亮度就越大。这就是对后来测定恒星距离很有用的“周光关系”。目前在银河系内共发现了700多颗造父变星。许多河外星系的距离都是靠这个量天尺测量的。
20 世纪初,光谱研究发现几乎所有星系的都有红移现象。所谓红移是指观测到的谱线的波长(l)比相应的实验室测知的谱线的波长(l0)要长,而在光谱中红光的波长较长,因而把谱线向波长较长的方向的移动叫做光谱的红移,z=(l-l0)/ l0。1929年哈勃用2.5米大型望远镜观测到更多的河外星系,又发现星系距我们越远,其谱线红移量越大。
谱线红移的流行解释是大爆炸宇宙学说。哈勃指出天体红移与距离有关:Z = H*d /c,这就是着名的哈勃定律,式中Z为红移量;c为光速;d为距离;H为哈勃常数,其值为50~80千米/(秒·兆秒差距)。根据这个定律,只要测出河外星系谱线的红移量Z,便可算出星系的距离D。用谱线红移法可以测定远达百亿光年计的距离。
1957年,O.C.威尔逊和巴普两人发现,晚型(G、K和M型)恒星光谱(见恒星光谱分类)中电离钙的反转发射线宽度的对数与恒星的绝对星等之间存在着线性关系。对这条谱线进行光谱分析,便可得到晚型恒星的距离。[1]
在恒星的光谱中出现有星际物质所产生的吸收线。这些星际吸收线的强度与恒星的距离有关:星越远,星和观测者之间存在的星际物质越多,星际吸收线就越强。利用这个关系可测定恒星的距离。常用的星际吸收线是最强的电离钙的K线和中性钠的D双线。不过这个方法只适用于O型和早B型星,因为其他恒星本身也会产生K线和D线,这种谱线同星际物质所产生的同样谱线混合在一起无法区分。由于星际物质分布不均匀,一般说来,用此法测得的距离,精度是不高的。
目视双星的相对轨道运动遵循开普勒第三定律,即伴星绕主星运转的轨道椭圆的半长径的立方与绕转周期的平方成正比。设主星和伴星的质量分别为m1和m2,以太阳质量为单位表示,绕转周期P以恒星年(见年)为单位表示,轨道的半长径的线长度A以天文单位表示,这种双星在观测者处所张的角度 α以角秒表示,则其周年视差π为:,
式中α和P可从观测得到。因此,如果知道双星的质量,便可按上述公式求得该双星的周年视差。如果不知道双星的质量,则用迭代法解上式,仍可求得较可靠的周年视差。周年视差的倒数就是该双星以秒差距为单位的距离。
移动星团的成员星都具有相同的空间速度。由于透视作用,它们的自行会聚于天球上的一点或者从某点向外发散,这个点称为“辐射点”。知道了移动星团的辐射点位置,并从观测得到n个成员星的自行μk 和视向速度V 噰(k=1,2,…,n),则该星团的平均周年视差为:
式中θk为第k个成员星和辐射点的角距,堸 为 n个成员星的空间速度的平均值。这样求得的周年视差的精度很高。但目前此法只适用于毕星团。其他移动星团因距离太远,不能由观测得到可靠的自行值。
统计视差法
根据对大量恒星的统计分析资料,知道恒星的视差与自行之间有相当密切的关系:自行越大,视差也越大。因此对具有某种共同特征并包含有相当数量恒星的星群,可以根据它们的自行的平均值估计它们的平均周年视差。这样得到的结果是比较可靠的。
银河系的较差自转(即在离银河系核心的距离不同处,有不同的自转速率)对恒星的视向速度有影响。这种影响的大小与星群离太阳的距离远近有关,因此可从视向速度的观测中求出星群的平均距离。这个方法只能应用于离太阳不太远,距离大约在1,200秒差距以内的恒星。
测定天体的距离是天体测量最重要的研究课题之一,尽管方法很多,但要得到可靠的结果是不容易的。因此,对于某一天体,应尽可能采用几种方法分别测定它的距离,然后相互校核,才能得到可靠的结果。