A. 加减法简便运算的技巧和方法
加减法简便运算的技巧和方法如下:
算基森冲术运算介绍:
算术运算简称运算。指按照规定的法则和顺序对式题或算式进行运算,并求出结果的过程。包括:加法、减法、乘法、除法、乘方、开方等几种运算形式。其中加减为一级运算,乘除为二级运算,乘方、开方为三级运算。在一道算式中,如果有几级运算存在,则应先进行高级运算,再进行低一级的运算。
如:3+22×4=3+4×4=3+16=19;如春中果只存在同级运算;则按从左至右的顺序进行;如果算式中有括号,则应先算括号里边,再按上述规则进行计算。如:(3+2)2×4=52×4=100。运算和计算略有区别,计算是指把横式中的数按运算符号和规定的顺序求得结果,可以按运算法则,也可以按口算或其他简便的方式直接求得结果。而运算则是指求得结果的过程。
B. 绠渚胯$畻镐庝箞绠
绠渚胯$畻鏂规硶濡备笅锛
1銆佸姞𨰾鍙锋硶锛氭嫭鍙峰墠鏄锷犲彿锛屽幓鎺夋嫭鍙蜂笉鍙桦彿锛屾嫭鍙峰墠鏄鍑忓彿锛屽幓鎺夋嫭鍙疯佸彉鍙枫
2銆佷箻娉曞垎閰嶅緥娉曪细𨰾鍙峰墠鏄涔桦彿锛屽幓鎺夋嫭鍙蜂笉鍙桦彿锛屾嫭鍙峰墠鏄闄ゅ彿锛屽幓鎺夋嫭鍙疯佸彉鍙枫
3銆佷箻娉旷粨钖埚緥娉曪细鍏堢畻𨰾鍙峰栫殑涔樻硶锛屽啀绠楁嫭鍙峰唴镄勫姞鍑忔硶銆
5銆佸炲己鐞呜В鑳藉姏锛氱亩渚胯$畻鏂规硶鍙浠ュ府锷╂垜浠镟村ソ鍦扮悊瑙f暟瀛︽傚康鍜屽师鐞嗭纴浠庤屾洿濂藉湴鎺屾彙鏁板︾煡璇嗐
6銆佹彁楂樻暟瀛﹀簲鐢ㄨ兘锷涳细阃氲繃绠渚胯$畻锛屾垜浠鍙浠ユ洿濂藉湴搴旂敤鏁板︾煡璇呜В鍐冲疄闄呴梾棰桡纴浠庤屽炲己鏁板﹀簲鐢ㄨ兘锷涖
7銆佸炲己阃昏緫镐濈淮鑳藉姏锛氱亩渚胯$畻寰寰闇瑕侀昏緫鎺ㄧ悊鍜屾濈淮𨱔垫椿镐х殑杩愮敤锛屼粠钥屽炲己阃昏緫镐濈淮鑳藉姏銆
8銆佹縺鍙戝︿範鍏磋叮锛氱亩渚胯$畻鏂规硶鍙浠ヨ╂垜浠镒熷弹鍒版暟瀛︾殑榄呭姏鍜岃叮锻虫э纴浠庤屾縺鍙戝︿範鍏磋叮鍜屽姩锷涖
C. 简便运算的技巧
简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。
主要用三种方法:加减凑整、分组凑整、提公因数法。
他们使用的都是数学计算中的拆分凑整思想。
主要步骤:
①遇见复杂的计算式时,先观察有没有可能凑整;
②运用四则运算凑成整十整百之后再进行简便计算。
2/4
加减凑整法
1、将计算式中的某一个数拆分,使其能与其他的数凑成整十,整百【例1】;
2、补上一个数,能够与其他数凑整,最后再减去这个数
分组凑整法
在只有加减法的计算题中,将算式中的各项重新分下组凑整,主要采用两个公式:G老师讲奥数(微)。【例3】
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
减法的性质:a-b-c=a-(b+c)。
提公因数法
使用乘法分配律提取公因数,a x (b±c)=a x b±a x c;
如果没有公因数,可以根据乘法结合律变化出公因数,详见【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做简算,是享受。细观察,找特点。
连续加,结对子。连续乘,找朋友。
连续减,减去和。连续除,除以积。
减去和,可连减。除以积,可连除。
乘和差,分别乘。积加减,莫慌张,
同因数,提出来,异因数,括号放。
同级算,可交换。特殊数,巧拆分。
合理算,我能行。
1方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:结合律法
(一)加括号法
1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
3方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因数的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧变除为乘
除以一个数等于乘以这个数的倒数
7方法六:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,需注意:
1.连续性
2.等差性
计算方法:头减尾,除公差。
8方法六:找朋友法
例题:
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。“带符号搬家”)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(去括号时,括号前面是减号,括号里面的运算符号要变成逆运算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(运用除法性质)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(运用除法性质)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
D. 数学除法简便计算方法技巧
第1步骤:观察规律。
观察 除法的简便运算方法 ,具有普遍性,以实例讲解。用168和4为例。