导航:首页 > 安装方法 > 天文红移量的测量方法

天文红移量的测量方法

发布时间:2024-12-13 02:47:12

Ⅰ 红移的观测方法

在天文观测中可以测量到红移,因为原子的发射光谱和吸收光谱,与在地球上的实验室内的分光仪校准好的光谱比较时,是非常的明显。当从同一个天体上测量到各种不同的吸收和发射谱线时,z被发现是一个常数。虽然来自遥远天体的谱线可能会被污染,并且有轻微的变宽,但并不能够用热力学或机械的行为来解释。基于这些和其他的理由,公众的舆论已经将天文学上观测到的红移认定是三种类似的多普勒红移之一,而没有任何一种假说能如此的振振有词。
光谱学,用在测量上,比只要简单的通过特定的滤光器来测定天体亮度的光度学要困难。当测光时,可以利用所有的数据(例如,哈柏深空视场和哈柏超深空视场),天文学家依靠的是红移测光的技术,由于滤光器在某些波长的范围内非常灵敏,依靠这样的技术可以假定许多光谱的本质隐藏在光源之内,观测误差可以δz=0.5为级距来排序,并且比分光镜的更为可靠许多。然而,光度学无法考虑到红移的定性描述。例如,一个与太阳相似的光谱,但红移z=1,最为明亮的是在红外线的区域,而非以黄-绿为尖峰的黑体光谱,并且光的强度在经过滤光器时将减少二级(1+z)。 使用SOHO卫星的LASCOC1摄影机观测到的太阳日冕。这张图片是以铁XIV的5308&Aring谱线经都普勒仪观察日冕中的电浆接近与远离卫星的速度,转移成不同色码的一幅假色图。在附近的目标(在我们的银河系内的天体)观测到的红移几乎都与相对于视线方向上的速度有关。观察这样的红移和蓝移,让天文学家可以测量速度和分光星的参考质量。这种方法是英国天文学家威廉·哈金斯在1868年最先采用的。相同的,从光谱仪中对单独的一颗恒星所测得的微量的红移和蓝移是天文学家检测是否有行星系环绕着恒星的诊断和测量的方法之一。对红移更精确的测量被应用于日震学上,借以精确的测量太阳光球的运动。红移也被应用于第一次的行星自转速率的测量、星际云的速度、星系的自转,还有吸积的动力学呈现在中子星和黑洞的多普勒和重力红移。
另外,还有各种不同辐射和吸收的温度造成的多普勒致宽-对单一的吸收或辐射谱线造成的红移和蓝移的效应。测量来自不同方向的氢线21公分波的扩展和转移,天文学家能测量出星际气体的退行速度,揭露出我们银河系的自转曲线。相同的测量也被应用在其他的星系,例如仙女座星系。做为一种诊断的工具,红移测量在天文学的分光学中是最重要的工具之一。 宇宙中合于哈勃定律的天体距离越远就有越大的红移,因此被观测到有最大红移,对应于最遥远的距离也有最长的回应时间的天体是宇宙微波背景辐射,红移的数值高达z=1089(z=0相当于现在的时间),在宇宙年龄为137亿年的状态下,相当于大爆炸之后379000年的时间。核心像点光源的类星体是“红移”(z>0.1)最高的天体,是在望远镜改善之前,除了星系之外还能被发现的其他高红移天体。被发现红移最高的类星体是z=6.4,被证实红移最高的星系是z=7.0在尚未经确认的报告中显示,透过重力透镜观测到的遥远星系集团有红移高达z=10的星系。
对比本星系群遥远,但仍在室女座星系团附近,距离为10亿秒差距左右的星系,红移与星系的距离是近似成比例的,这种关系最早是由哈柏发现的,也就是众所皆知的哈勃定律。星系红移最早是VestoSlipher大约在1912年发现的,而哈柏结合了Slipher的测量成为度量天体距离的另一种方法-哈柏定律。在建基于广义相对论下被广泛接受的宇宙模型中,红移是空间扩展的主要结果:这意味着遥远的星系都离我们而去,光离开星系越久,空间的扩展也越多,所以光也就被延伸越多,红移的值也就越大,所以越远的看起来就移动的越快。哈柏定律一样适用哥白尼原则,由于我们通常不知道天体有多明亮,测量红移会比直接测量距离容易,所以使用哈柏定律就可以得知天体大略的距离。
星系之间的和星系团的重力交互作用在正常的哈柏图上导致值得注意的消散,星系的本动速度和在宇宙中的维理天体的迷踪质量相叠加,这种作用导致在附近的星系(像仙女座星系)显示出蓝移的现象,并且向共同的重心接近,同时星系团的红移图像上帝的手指在作用使本动速度的消散大致成球型的分布。这个增加的组合给了宇宙学家一个单独测量质量的质光比(以太阳的质量和光为单位的星系的质量与光度比值),是寻找暗物质的重要工具。
对更遥远的星系,目前的距离和红移之间的关连性变得更为复杂。当你看见一个遥远的星系,也就是看见相当久远之前的星系,而那时的宇宙和现在是不同的。在那些早期的时刻,我们期待在俇展的速率上有所不同,原因至少有二个: 星系之间相互的重力吸引会减缓宇宙的扩张行动 可能存在的宇宙常数或第五元素与可能会改变宇宙扩张的速率。 最近的观测却建议宇宙的扩张不仅没有如同第一点的预测减速,反而在加速中。这是广泛的,虽然不是相当普遍的,相信这是因为有暗物质在控制着宇宙的发展。这样的宇宙常数暗示宇宙的最后命运不是大挤压,反而可预见宇宙将长久存在。(可是在宇宙内多数的物理程序仍然朝向热死亡。)
扩张的宇宙是大霹雳理论的中心预言,如果往前追溯,理论预测"奇点"的存在,而那时的宇宙有无限大的密度;广义相对论的理论,大霹雳的理论依据,将不再能适用。最有可能取代的理论据信是尚未成熟的量子重力学,能在密度变得无穷大之前继续适用。 在先进的自动化望远镜和改良的光谱仪合作之下,以一定数量星空的红移当成宇宙的投影,通过红移与角度位置数据的结合,红移巡天图可以显示天空中一定范围内物质的立体分布状态。这些观测被用来研究宇宙的宇宙的大尺度结构,长城、许多广达5亿光年的超星系团,红移巡天的检测提供了戏剧性的大尺度构造的例子。
第一次红移巡天是CfA红移巡天,开始于1977年,至1982年完成最初的资料蒐集。最近的有2度视场星系红移巡天,测量宇宙在一个部份的大尺度结构,量测了22万个星系的z值,最后的结果已经在2003年6月释出。(除了描绘星系在大尺度的模型,2度视场也可以估计微中子质量的上限。)其他值得重视的研究还有史隆数位巡天(SDSS),在2005年仍在继续进行中,目标瞄准在观测一亿个天体。SDSS已经观测到红移高达0.4的星系和红移超过z=6的类星体。深度2红移巡天使用凯克望远镜和新的“DEIMOS”光谱仪,是深度1计划的延续。深度2是设计来研究红移0.7或更高的黯淡星系,因此可以填补SDSS和2df计划的不足。

Ⅱ 请问红移是怎样测定的

直接观测的。
一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。

光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。

天体光谱中某一谱线相对于实验室光源的比较光谱中同一谱线向红端的位移。

太阳的红移 1907年哈姆发现太阳边缘有与自转无关的小量红移。两条铁谱线与日面中心的相比,红移了+0.012埃。同年,海耳和W.S.亚当斯指出,他们所观测的谱线在日面边缘都有红移;而且波长越长,红移越大。此后发现除红移外,还有谱线轮廓的复杂变化。现在,任何解释太阳谱线红移的理论必须同时能说明下列观测事实:①日面中心的红移(绝对值)为广义相对论所预期的引力红移 □的一半;②红移从日面中心到边缘有变化,而且东边缘红移超出西边缘红移;③谱线轮廓不对称性从日面中心到边缘的变化,特别是当到达边缘时不对称性消失;④不同谱线的红移量之间存在一定的差别;有一些谱线的红移从日面中心到边缘没有变化,等于广义相对论红移。迄今对此还没有一种令人满意的解释。

电磁波经过太阳附近的红移 "先驱者" 6号行星际探测器于1968年12月21日飞到太阳背后,当它为日冕所掩时,曾观测到它发射的2,292兆赫频带的中心频率,除平均漂移外,可能有剩余红移。当金牛座T星接近于日掩时,也曾观测到中性氢21厘米谱线减小150赫。这些现象尚待进一步探索。

恒星的红移 1868年哈根斯测量了一些恒星的视向速度,宣布天狼的红移为每秒47公里。1915年发现白矮星之后,人们通常认为白矮星的巨大剩余红移主要是引力红移。此外,在Of型星、沃尔夫-拉叶星、某些银河星团的成员星、猎户座大星云中的B型星中也观测到反常红移(这里指不能用引力效应解释的红移)。目前,还没有恰当的理论揭示恒星红移的本原。

星系的红移 除少数几个近距星系外,其他星系的光谱都呈现红移,而且用射电方法测定的红移与可见光波段一致。1929年,哈勃发现了星系的红移量和距离成正比的规律,即哈勃定律。若承认红移是多普勒退行速度效应,则能得出可观测的宇宙作整体膨胀的结论。星系的红移成为五十年来影响最为深远的宇宙现象。然而,还有很多观测事实,在探讨星系红移本原时应该计及。例如,在某些星系团中,旋涡星系的红移比椭圆星系的大,即存在所谓的星系类型-红移效应;一些双重星系和多重星系中,特殊成员星系有反常红移(这里指不满足哈勃定律的红移);霍金斯根据474个星系的红移-视星等关系,求出红移与距离的1.66次方成比例;沃库勒分析了118个星系群和星系团的平均红移和距离,认为红移与距离不是线性关系。

1966年以来,得知有不少类星体光谱中有比发射线多得多的吸收线,有的还有一组以上的不同红移的吸收线系;此外,还有很多吸收线没有得到证认。吸收线红移一般小于发射线红移。通常认为,吸收线是在类星体周围的气体中,或是在视线方向介于观测者和类星体之间的星系、星系晕或星际物质中产生的。

类星体的红移和视星等之间没有明显的关系,这与正常星系的情况很不相同。1978年,沙鲁和萨普利根据626个类星体的红移-视星等图,得出的斜率是0.141,而哈勃线性律则要求斜率为0.2。

1966年,阿普发现有一些类星体与特殊星系成协,而类星体有较大的红移。后来这种情况陆续有所发现,类星体的不相符红移甚至有大出两个数量级的,这向传统的红移解释提出了严重的挑战。

红移和速度 在经典多普勒效应中,引起谱线红移的仅是视线方向上的退行速度。在狭义相对论多普勒效应中,除径向退行外,横向速度也能引起红移,但比退行速度的红移小一级,可忽略不计。传统上把观测到的红移完全换算为径向退行速度。类星体巨大红移和不相符红移发现以后,横向速度引起的红移开始受到重视。若能观测到横向角速度(包括自行),则与保留横向速度项的相对论多普勒效应和哈勃定律联立求解,便可得到横向线速度和比单由哈勃定律得出的小得多的距离,并可把不相符红移解释为横向速度的差异。

星系和类星体的红移的解释 二十年代,星系红移的研究曾受到德西特静态宇宙模型的推动,而星系速度-距离关系的发现,则成为宇宙膨胀的观测证据。以广义相对论为基础的宇宙膨胀假说不仅可以解释哈勃定律,还能说明一系列观测到的现象,例如微波背景辐射和奥伯斯佯谬,但不能解释不相符红移。半个世纪以来,人们提出了许多关于红移的非速度本原的解释,例如,光子老化说,物理常数变化理论。有人还试图用不均匀宇宙模型、多重爆炸宇宙学等来说明偏离哈勃定律的不相符红移,然而这些都是假说,没有得到公认。

Ⅲ 怎样测量红移

由于红移正比于距离,这就给宇宙学家提供了一个测量宇宙的衡量标准。量杆必须通过测量较近星系来校准,虽然这种校准还有一些不确定性,但它仍然是宇宙学唯一最重要的发现。

没有测量距离的方法,宇宙学家就不可能真正开始认识宇宙的本质,而哈勃定律的准确性表明,广义相对论是关于宇宙如何运转的极佳描述。

由于历史原因,星系的红移仍然用速度来表示,尽管天文学家知道红移并非由自身的空间运动所引起。一个星系的距离等于它的红移“速度”除以一个常数,这个常数叫作哈勃常数,它的数值大约是600000米每秒每百万秒差距,这意味着星系和我们之间距离的每一个百万秒差距将引起600000米每秒的红移速度。对我们最近的邻居来说,宇宙学红移是很小的,而像仙女座星系那样的星系显示的蓝移确实是它们的空间运动造成的多普勒效应蓝移。

遥远的星系团中的星系显示围绕某个中间值的红移扩散度,这个中间值就是该星系团的宇宙学红移,而对于中间值的偏差则是星系在星系团内部的运动引起的多普勒效应。

哈勃定律是唯一的红移/距离定律,除稳定宇宙除外,不论从宇宙中的哪个星系来观测,这个定律看起来都是一样的。每个星系,非常近的邻居除外,退离另一个星系的运动都遵循这条定律,膨胀是没有中心的。这种情形通常被比作画在气球表面的斑点,当气球吹胀时,斑点彼此分开更远,这是因为气球壁膨胀了,而不是因为斑点在气球表面上移动了。从任意一个斑点进行的测量将证明,所有其他斑点的退行是均匀的,完全遵守哈勃定律。

当红移大到相当于大约1/3以上光速时,红移的计算就必须考虑狭义相对论的要求。所以,红移等于2并不表示天体的宇宙学速度是光速的两倍。

事实上,z=2对应的宇宙学速度等于光速的80%。已知最遥远的类星体的红移稍稍大于4,对应的速度刚刚超过光速的90%;星系红移的最高纪录属于一个叫作8C1435+63的天体,其红移值等于4.25。宇宙微波背景辐射的红移是1000。

宇宙的衡量

Ⅳ 天文红移量的测定方法

红移的测量方法
红移可以经由单一光源的光谱进行测量。如果在光谱中有一些特征,可以是吸收线、发射线、
或是其他在光密度上的变化,那么原则上红移就可以测量。这需要一个有相似特征的光谱来做比较,例如,原子中的氢,当它发出光线时,有明确的特征谱线,一系列的特色谱线都有一定间隔的。如果有这种特性的谱线型态但在不同的波长上被比对出来,那么这个物体的红移就能测量了。因此,测量一个物体的红移,只需要频率或是波长的范围。只观察到一些孤立的特征,或是没有特征的光谱,或是白噪音(一种相当无序杂乱的波),是无法计算红移的。
红移(和蓝移)可能会在天体被观测的和辐射的波长(或频率)而带有不同的变化特征,天文学习惯使用无因次的数量z来表示。
在z被测量后,红移和蓝移的差别只是间单的正负号的区别。依据下一章节的机制,无论被观察到的是红移或蓝移,都有一些基本的说明。例如,多普勒效应的蓝移(z0),就会联想到物体远离观测者而去并且能量减少。同样的,爱因斯坦效应的蓝移可以联想到光线进入强引力场,而爱因斯坦效应的红移是离开引力场。

红移:
红移在物理学和天文学领域,指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。红移的现象目前多用于天体的移动及规律的预测上。
红移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步深入,任何电磁辐射的波长增加都可以称为红移。对于波长较短的γ射线、X-射线和紫外线等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对于波长较长的红外线、微波和无线电波等波段,尽管波长增加实际上是远离红光波段,这种现象还是被称为“红移”。
当光源远离观测者运动时,观测者观察到的电磁波谱会发生红移,这类似于声波因为多普勒效应造成的频率变化。这样的红移现象在日常生活中有很多应用,例如多普勒雷达、雷达枪,在分光学上,人们使用多普勒红移测量天体的运动。这种多普勒红移的现象最早是在19世纪所预测并观察到的,当时的部分科学家认为光的本质是一种波。
另一种红移机制被用于解释在遥远的星系、类星体,星系间的气体云的光谱中观察到的红移现象。红移增加的比例与距离成正比。这种关系为宇宙在膨胀的观点提供了有力的支持,比如大爆炸宇宙模型。

观测方法:
在天文观测中可以测量到红移,因为原子的发射光谱和吸收光谱,与在地球上的实验室内的分光仪校准好的光谱比较时,是非常的明显。当从同一个天体上测量到各种不同的吸收和发射谱线时,z被发现是一个常数。虽然来自遥远天体的谱线可能会被污染,并且有轻微的变宽,但并不能够用热力学或机械的行为来解释。基于这些和其他的理由,公众的舆论已经将天文学上观测到的红移认定是三种类似的多普勒红移之一,而没有任何一种假说能如此的振振有词。
光谱学,用在测量上,比只要简单的通过特定的滤光器来测定天体亮度的光度学要困难。当测光时,可以利用所有的数据(例如,哈柏深空视场和哈柏超深空视场),天文学家依靠的是红移测光的技术,由于滤光器在某些波长的范围内非常灵敏,依靠这样的技术可以假定许多光谱的本质隐藏在光源之内,观测误差可以δz=0.5为级距来排序,并且比分光镜的更为可靠许多。然而,光度学无法考虑到红移的定性描述。例如,一个与太阳相似的光谱,但红移z=1,最为明亮的是在红外线的区域,而非以黄-绿为尖峰的黑体光谱,并且光的强度在经过滤光器时将减少二级(1+z)。

阅读全文

与天文红移量的测量方法相关的资料

热点内容
如何促成成交方法案例 浏览:420
茅台酒鉴别方法有哪些 浏览:340
浪琴手表受磁解决方法 浏览:465
猪睡窝的正确方法 浏览:591
有效赞美的方法图片 浏览:266
借款合同约定计算方法 浏览:702
甘草菊花的功效与作用及食用方法 浏览:825
颈椎病如何治疗有哪些好方法治疗 浏览:551
婴宝使用方法 浏览:755
橱柜异形柜如何安装方法 浏览:729
儿童条理性的训练方法 浏览:265
语料库是一个研究方法吗 浏览:521
如何用简便的方法治落枕 浏览:670
订电容量计算方法 浏览:374
电瓶短路电流检测方法 浏览:992
家常炖羊肉加萝卜最简单方法 浏览:496
肩部锻炼方法小孩视频 浏览:319
抽水机的使用方法 浏览:845
秋季黑坑钓鲤鱼最佳方法 浏览:418
用啥方法效果好治疗太田痣 浏览:70