❶ 陶瓷原料中CaO,MgO含量的测定。一,方法原理。 二,分析步骤。 三,数据处理。 四,结果评价。
1、主要仪器和试剂
1.1 仪器
WFD-Y2型原子吸收分子光光度计(北京第二光学仪器厂)
钙、镁空心阴极灯(日本岛津)
1.2 试剂
盐酸:优级纯
硝酸:优级纯
硫酸:优级纯
高氯酸:分析纯
氧化锶:分析纯,配制20%水溶液
氧化铝溶液:1毫克/毫升(用99.99%的铝片配制)
氧化钙标准溶液(甲):1毫克/毫升
配制方法是准确称取经灼烧的氧化镁(高纯)1.000克于250毫升烧杯中,加入1:1盐酸10毫升低温加热溶解,冷却后移至1升容量瓶中,用水稀释至刻度,摇匀。
氧化镁标准溶液(乙):20微克/毫升
配制方法是,准确吸取氧化镁标准溶液(甲)10毫升于500毫升容量瓶中,用水稀释至刻度,摇匀。
2、实验方法
根据原子吸收法的工作原理以及样品的情况,对钙、镁测定的影响因素进行了反复实验,从而确定了钙、镁的最佳测定条件。
准确称取在110℃烘干一小时的粉末样品0.1克置于铂皿中,用水润湿并使试样均匀散开,加入10毫升氢氟酸与0.5毫升高氯酸,在低温电炉上加热分解,蒸发近干,再加10毫升氢氟酸与0.5毫升高氯酸,在低温电炉上加热分解,蒸发近干,再加10毫升氢氟酸继续蒸发至大量冒高氯酸浓烟1~2分钟,冷却后,加4毫升盐酸(比重1.19)和10毫升水,加热使残渣溶解,再补加20毫升水,继续加热至溶解完全清澈透明,冷却至室温后,移入100毫升容量瓶中,加5毫升氯化锶(20%)溶液,用水稀释至刻度,摇匀。分别用4%盐酸,1%氯化锶的钙、镁标准系列,直接比较进行原子吸收光谱测定。
试样中各元素、氧化物的百分含量按下式计算:
M=C·A·A×10-6/G×100%
式中:M——试样中元素氧化物百分比含量,%
C——试样溶液中元素氧化物的浓度,微克/毫升
V——溶液的体积,毫升
A——试样溶液的稀释倍数
G——试样重量,克
2、结果与讨论
2.1 仪器条件的选择
①灵敏度
在上述条件下测得氧化钙的灵敏度为0.06微克/毫升(1%吸收),浓度为2微克的氧化钙标准溶液通常给出0.15左右的吸光度。测得氧化镁的灵敏度为0.0037微克/毫升(1%吸收),浓度为0.2微克/毫升的标准溶液通常给出0.24左右的吸光度。
②线性范围
标准系列为每毫升含氧化钙0、1、2、4、6、8、10微克,每毫升含氧化镁0、0.2、0.4、0.6、0.8、1.0微克4%盐酸和1%氧化锶的溶液,在上述条件下分别测定其吸光度,其工作曲线如图1。
由图可看出,氧化钙的工作曲线,其线性范围在1~7微克/毫升;氧化镁的工作曲线线性范围在0.1~0.6微克/毫升。
③分析线的选择
波长4227、2852是钙、镁最强的吸收线,适宜于(0.1~0.7)%CaO、(0.02~0.06)%MgO含量的样品测定,不需分离,具有操作简便,准确快速等特点。对于分析高浓度度的试样,可选择灵敏度低的谱线,以便得到适度的吸光度,改善曲线的线性范围。CaO在20~60微克,MgO在1~20微克范围内选择波长Ca2399、Mg2796的分析线,具有很好的线性关系,测得石灰石和白云石样品中的CaO、MgO的含量见表2。
表2 分析结果比较
试样
分 析 方 法
CaO(%)
MgO(%)
石灰石
原子吸收法
55.66
0.16
化学分析法
55.58
0.17
白云石
原子吸收法
27.42
19.56
化学分析法
27.54
19.56
由表2看出,原子吸收法测得的结果与化学分析法测得的结果十分相近。
④狭缝宽度
光谱通带直接影响测定灵敏度和标准曲线的线性关系,单色器的光谱通带由公式Δλ=D×S决定。
式中:Δλ——光谱通带宽度,Å;
D——分光器的倒数线色散率,Å/ 毫米;
S——狭缝宽度,毫米
因为对于仪器本身,D是确定的,Δλ仅由S决定。当吸收线附近有干扰与非吸收光存在时,使用较宽的狭缝会导致灵敏呀明显降低。非吸收线的存在也人使工作曲线发生弯曲。合适的狭缝宽度可用实验方法确定。其方法是,将试液喷入火焰中,调节狭缝宽度,测定不同狭缝的吸收值,当狭缝增宽到遣下程度,其他谱线或非吸收线出现在光谱通带内,吸收值立即开始减少,不引起吸收值减少的最大狭缝宽度,确定为最合适的狭缝宽度。WFD-Y2原子吸收光谱仪,狭缝宽度定为0.1毫米,具有比较灵敏的吸收率。
2.2 酸的影响
①配制每毫升含4微克CaO,0.4微克MgO,4%HCI、HNO3、HCIO4、H2SO3、H3PO4等5种酸的标准溶液,测定CaO、MgO的吸光度,其结果见表3。
从表3中可以看出,H3PO4、H2SO3对MgO的影响不明显,对CaO有明显的影响。主要原因是CaO在火焰中与P2O5、SO3形成了难熔的磷酸盐和硫酸盐,空气 — 乙炔火焰达不到其熔点温度,影响了对钙基态原子的形成,降低了原子的吸收信号。HCIO4、HNO3是氧化性酸,钙、镁的吸收有正效应。HCI是弱还原性酸,在利于溶液中化合物的稳定,又是实验室的通用酸,选用HCI作为测定溶液的介质最为适宜。
②盐酸浓度的影响
配制每毫升含4微克氧化钙,0.4微克氧化镁,2~12%不同浓度盐酸标准溶液测定其吸光度,结果见图2。
由图2可看出,盐酸浓度对钙、镁的吸光度的影响,在2~8%的盐酸浓度范围内影响不明显。当浓度>8%时,吸光度明显下降,原因是,溶液中盐酸的浓度高时,喷雾效率下降,使得火焰中原子浓度减少,导致吸收强度下降。在一般测定中,溶液的盐酸浓度保持在4%左右,或将试样和标准溶液中的盐酸浓度匹配一致,可减少误差。
2.3 共存离子的影响
配制4%盐酸溶液,每毫升含4微克CaO、0.4微克MgO为标准溶液1,每毫升含标准溶液1相同的元素含量再配入每毫升4微克Fe2O3、20微克Na2O3、30微克K2O为混合离子标准溶液2;每毫升含混合离子标准溶液2的相同元素含量,再配入20%Al2O3为混合标准溶液3,每毫升含混合标准溶液3的相同元素含量,再加入1%的氯化锶为混合标准溶液4.分别测定这4种标准溶液的吸光度,其结果见表4。
表4 共存离子的影响
元素
吸 光 度
标准溶液1
标准溶液2
标准溶液3
标准溶液4
CaO
0.35
0.34
0.10
0.34
MgO
0.51
0.49
0.13
0.50
从上表可以看出,标准溶液1和混合标准溶液2的吸光度基本一致,显示出共存离子钾、钠、铁对钙、镁的测定没有影响。在混合标准溶液3中,由于20%Al2O3的存在,吸光度比标准溶液1、2下降3~4倍,对测定钙、镁显示出了明显的干扰。在混合标准溶液4中加入1%的氯化锶,吸光度和标准溶液1、2基本一致,显示了消除了Al2O3对钙、镁的干扰,原因是,在火焰中CaO、MgO与Al2O3形成了高晶格能、高熔点的尖晶石化合物(MgO·Al2O3)、(3CaO·5 Al2O3),空气 — 乙炔火焰达不到他们的熔点温度,影响了这些化合物的解离和基态原子的形成,严重的干扰了钙、镁的测定。在混合标准溶液中加入1%氯化锶,氯化锶和氧化铝形成了稳定的化合物,将钙、镁释放出来而消除了干扰。
根据资料介绍,同一份溶液中锌、镍、铜、锰、铬、铝等元素的存在不干扰钙、镁的测定,各元素间也存在不干扰钙、镁的测定,各元素间也存在相互干扰(共存元素铝、钛的干扰用入氯化锶来消除),所得结果和化学分析方法完全一致。因此,利用原子吸收法具有简便、快速的显着优点,更适用于陶瓷釉料、颜料的元素组成分析,可解决化学分析法中存在金属元素干扰钙、镁测定的难题。
2.4 标准样品的分析结果对比
表5列出了几种原料中CaO、MgO采用不同方法的分析结果。
由表5可以看出用原子吸收法测得的CaO、MgO的含量比化学分析法更接近于标准结果。由此说明,原子吸收法是一种快速、准确测定原料中CaO、MgO含量的行之有效的方法。
表5 标准样品测试结果对比
原料样品
化学分析法
原子吸收分析法
标准含量
名称
CaO
MgO
CaO
MgO
CaO
MgO
长 石
0.15
0
0.08
0.04
0.07
0.03
粘 土
0.35
0.10
0.15
0.07
0.12
0.05
焦宝石
0.40
0.20
0.35
0.15
0.37
0.14
由表5可以看出用原子吸收法测得的CaO、MgO的含量比化学分析法更接近于标准结果。由此说明,原子吸收法是一种快速、准确测定原料中CaO、MgO含量的行之有效的方法。
陶瓷原料包括高岭土、粘土、瓷石、瓷土、 着色剂、青花料、石灰釉、石灰碱釉等。
高岭土陶瓷原料,是一种主要由高岭石组成的粘土。因首先发现于江西省景德镇东北的高岭村而得名。它的化学实验式为:Al203·2Si02·2H20,重量的百分比依次为:39.50%、46.54%、13.96%。纯净高岭土为致密或松疏的块状,外观呈白色、浅灰色。被其他杂质污染时,可呈黑褐、粉红、米黄色等,具有滑腻感,易用手捏成粉末,煅烧后颜色洁白,耐火度高,是一种优良的制瓷原料。
粘土陶瓷原料是一种含水铝硅酸盐矿物,由长石类岩石经过长期风化与地质作用而生成。它是多种微细矿物的混合体,主要化学组成为二氧化硅、三氧化二铝和结晶水,同时含有少量碱金属、碱土金属氧化物和着色氧化物等。粘土具有独特的可塑性和结合性,其加水膨润后可捏练成泥团,塑造所需要的形状,经焙烧后变得坚硬致密。这种性能,构成了陶瓷制作的工艺基础。粘土是陶瓷生产的基础原料,在自然界中分布广泛,蕴藏量大,种类繁多,是一种宝贵的天然资源。
瓷石也是制作瓷器的原料,是一种由石英、绢云母组成,并有若干长石,高岭土等的岩石状矿物。呈致密块状,外观为白色、灰白色、黄白色、和灰绿色,有的呈玻璃光泽,有的呈土状光泽,断面常呈贝壳状,无明显纹理。瓷石本身含有构成瓷的多种成分,并具有制瓷工艺与烧成所需要的性能。我国很早就利用瓷石来制作瓷器,尢其是江西、湖南、福建等地的传统细瓷生产中,均以瓷石作为主要原料。
瓷土由高岭土、长石、石英等组成,主要成分为二氧化硅和三氧化二铝,并含有少量氧化铁、氧化钛、氧化钙、氧化镁、氧化钾和氧化钠等。它的可塑性能和结合性能均较高,耐火度高,是被普遍使用的制瓷原料。
着色剂存在于陶瓷器的胎、釉之中,起呈色作用。陶瓷中常见的着色剂有计三氧化二铁、氧化铜、氧化钴、氧化锰、二氧化钛等,分别呈现红、绿、蓝、紫、黄等色。
青花料是绘制青花瓷纹饰的原料,即钴土矿物。我国青花料蕴藏较为丰富,江西的乐平、上高、上饶、丰城、赣州,浙江的江山,云南的宜良,会泽、榕峰、宣威、嵩明以及广西、广东、福建等地均有钴土矿蕴藏。我国古代青花瓷使用的青花料一部分来自国外,大部分属国产。进口料中有苏麻离青、回青;常用的国产料有石子青、平等青,浙料、珠明料等。
石灰釉主要物质是氧化钙(Cao),起助熔作用,特点是高温粘度小,易于流釉,釉的玻璃质感强,透明度高,一般釉层较薄,釉面光泽较强,能清晰地刻划纹饰,南宋以前瓷器大多使用石灰釉。
石灰碱釉主要成分为助熔物质氧化钙以及氧化钾(K2o)、氧化钠(Na20)等碱性金属氧化物。特点是高温粘度大,不易流釉,可以施厚釉。在高温焙烧过程中,釉中的空气不能浮出釉面而在釉中形成许多小气泡,使釉中残存一定数量的未溶石英颗粒,并形成大量的钙长石析晶。这些小气泡、石英颗粒和钙长石析晶使进入釉层的光线发生散射,因而使釉层变得乳浊而不透明,产生一种温润如玉的视觉效果。石灰碱釉的发明与运用,是传统青瓷工艺的巨大进步。石灰碱釉出现于北宋汝窑青瓷中。南宋龙泉窑瓷器大量采用石灰碱釉,使釉色呈现出如青玉般的质感,如粉青、梅子青。可以说南宋龙泉青瓷已达到中国陶瓷史上单色釉器的顶峰。
❷ 鍖栧﹀师鏂栾嵂镄勫惈閲忔祴瀹氩彲阃夋嫨镄勫父鐢ㄦ柟娉曟湁鍝浜
鍖栧﹀师鏂栾嵂镄勫惈閲忔祴瀹氭柟娉曢栭夋淮瀹氩垎鏋愭硶锛岃屽埗鍓傜殑钖閲忔祴瀹氭柟娉曢栭夎壊璋辨硶銆
铡熸枡钻瑙f瀽濡备笅锛
铡熸枡钻锛屾寚鐢ㄤ簬鐢熶骇钖勭被鍒跺墏镄勫师鏂栾嵂鐗╋纴鏄鍒跺墏涓镄勬湁鏁堟垚浠斤纴鐢卞寲瀛﹀悎鎴愩佹岖墿鎻愬彇鎴栬呯敓鐗╂妧链镓鍒跺囩殑钖勭岖敤𨱒ヤ綔涓鸿嵂鐢ㄧ殑绮夋汤銆佺粨鏅躲佹蹈鑶忕瓑锛屼絾䦅呬汉镞犳硶鐩存帴链岖敤镄勭墿璐ㄣ
铡熸枡钻鑻辨枃钖岮PI(Active Pharmaceutical Ingredient)铡熸枡钻鍦↖CHQ7A涓镄勫畬锽勫畾涔夛细镞ㄥ湪鐢ㄤ簬钻鍝佸埗阃犱腑镄勪换浣曚竴绉岖墿璐ㄦ垨鐗╄川镄勬贩钖堢墿銆
杩戝勾鍑虹幇镄勫氱嶅崐钖堟垚鎶楃敓绱狅纴鍒欐槸鐢熺墿钖堟垚鍜屽寲瀛﹀悎鎴愮浉缁揿悎镄勪骇鍝併傚师鏂栾嵂涓锛屾湁链哄悎鎴愯嵂镄勫搧绉嶃佷骇閲忓强浜у兼墍鍗犳瘆渚嬫渶澶э纴鏄鍖栧﹀埗钻宸ヤ笟镄勪富瑕佹敮镆便
铡熸枡钻璐ㄩ噺濂藉潖鍐冲畾鍒跺墏璐ㄩ噺镄勫ソ鍧忥纴锲犳ゅ叾璐ㄩ噺镙囧嗳瑕佹眰寰堜弗锛屼笘鐣屽悇锲藉逛簬鍏跺箍娉涘簲鐢ㄧ殑铡熸枡钻閮藉埗璁浜嗕弗镙肩殑锲藉惰嵂鍏告爣鍑嗗拰璐ㄩ噺鎺у埗鏂规硶銆
❸ 陶瓷原料八大元素的分析方法
(1)滴定法湿法化学分析测定陶瓷原料的化学成分,滴定法是其中最常用的方法之一。
滴定分析法的原理是,滴定试剂与被测组分在适当的酸碱pH值下反应,通过指示剂在反应达到终点时颜色突变所使用的滴定试剂的多少来计算被测物的含量。陶瓷成分测定中,三氧化二铝、氧化镁>5%、氧化钙、三氧化二铁、氟化钙、较高含量的二氧化钛,还有熔块釉料中常见的二氧化锆、氧化锌、三氧化二硼等。
(2)原子吸收光谱法原子吸收光谱法的分析原理是,将光源辐射出的待测元素的特征光谱通过样品的蒸汽时,被蒸汽中的待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。由于原子吸收检测的灵敏度很强,因此在测定较低含量的元素时比较显优势。
就目前运用的检测手段而言,原子吸收是最准确的方法之一,其元素检出限可低至0.0001%。
(3)X射线荧光法X射线荧光法的分析原理是用X射线照射试样时,试样会被激发出荧光X射线,不同元素被激发出的荧光X射线的波长(或能量)不同,且射线强度与元素含量成正比。
把混合的荧光X射线按波长(或能量)分开,分别测量不同波长(或能量)的数值和射线的强度,可以进行定性和定量分析。X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。
作为干法化学分析方法的典型代表,越来越多的陶瓷材料检测采用X射线荧光分析法进行测定材料的化学成分,主要在于这种方法的快速、准确及操作简捷。波长色散法的检测结果非常稳定,无论成分含量的高或低,准确性均符合国家标准要求,检出限低至0.001%。
能量色散法能在同一时间分析出所有元素,具有准确、快速的优点,定量分析稍逊于波长色散法。但在特定范围内的材料也能获得满意的结果,特定元素检出限可达0.01%。
❹ 混凝土的原材料检测方法
对于原材料的检测,国家有相应的标准规范,试验室必须及时掌握标准的修订情况,同时注意到原材料某个项目可能在不同标准中有不同的检验方法,如GB/T1596-2005《用于水泥和商品混凝土中的粉煤灰》,GB/T18736-2002《高强高性能商品混凝土用矿物外加剂》2个标准都有粉煤灰需水量比试验方法,GB/T1596-2005的方法较为烦琐。有时使用者需对原材料进行快速检测来控制生产,或比较几个产品的优劣,需要有可行的检验方法,采取的方法未必是国家标准。
1.生产商品混凝土用水一般使用洁净的地下水或自来水,应注意其有害离子(氯离子、硫酸根离子)不能超标。
2.石子的粒形和级配对商品混凝土的和易性影响较大。初次使用某个石场的石子应测定其压碎值,压碎值大的石子不能用于生产高标号商品混凝土。针片状多、级配不好的石子空隙率大,导致商品混凝土可泵性差,需要较多黄砂和水泥填充,经济性差,应避免使用。采用同一石场的石子,平时应重点检测其级配,注意针片状含量。
3.黄砂应尽量使用II区中砂,目测其中有无泥块,及泥块的多少。一般泥块多的黄砂含泥量也大,若使用则会影响商品混凝土的强度和耐久性,含泥量多的湿砂用手搓,手上会有较多泥粉。使用粗砂和细砂应调整砂率和粉煤灰掺量,平时重点检测黄砂级配。
4.商品混凝土的强度是由水泥和水反应形成的水化产物,及活性掺合料的二次水化产物而逐步发展而成。水泥强度的高低直接影响商品混凝土强度的高低。按水灰比公式C/W=fco/(fce×0.46)+0.07,可知水灰比一定时商品混凝土强度fco与水泥强度fce成正比。如原设计商品混凝土强度34.5MPa(C30等级),采用P·O42.5级水泥拌制,水泥强度48MPa,可知水灰比C/W=1.63,若因管理不善,误用P·O32.5级水泥,水泥强度38Mpa,水灰比不变,商品混凝土强度为27.3MPa,商品混凝土强度不合格。一般P·O42.5级水泥强度在45Mpa~52MPa之间波动,商品混凝土强度波动在设计强度等级范围内。可见预知水泥强度等级可有效控制商品混凝土质量。由于水泥强度要到28天才知道,这就要求试验室按批复试水泥强度,还要通过大量试验数据积累,建立早期(1天,3天)强度与28天强度的关系式,就能避免使用不合格水泥。据笔者经验P·O32.5级水泥3天强度小于20MPa,P·O42.5级水泥3天强度25MPa左右,由此可大致判断水泥强度等级,另外在检测水泥强度前,先测量水泥胶砂流动度,可初步判断水泥需水量多少。
5.粉煤灰掺入商品混凝土中可显着改善商品混凝土的和易性和流动性,大量用于制备大体积商品混凝土、泵送商品混凝土。值得一提的是,不同厂家、不同粉煤灰因煤种不同、生产工艺不同,导致粉煤灰需水量不一样,不同厂家的粉煤灰检测以需水量比指标为标准。同一厂家的粉煤灰一般细度越大,需水量比越大,可以以细度指标为标准。细度小、活性大、需水量小的粉煤灰掺入商品混凝土中可节约水泥,节约外加剂用量,而需水量大的粉煤灰会向商品混凝土中引入大量水,造成水灰比过大,强度下降,若使用则要增加外加剂用量,往往得不偿失。有条件的商砼站应做到每车取样检测细度,掌握粉煤灰质量波动情况,对因粉煤灰细度变化引起混凝度坍落度、强度变化应足够重视。粉煤灰需水量比检测方法建议采用GB/T18376-2002标准采用的方法,采用GB/T1767-1999规定的胶砂测定对比胶砂的流动度,测定试验胶砂在达到对比胶砂流动度时用水量。也可测定试验胶砂在用水225ml时流动度,流动度大的粉煤灰需水量小,反之粉煤灰需水量大。GB/T1596-2005的方法测定粉煤灰需水量比有3个不便,一是标准砂采用GB/T17671-1999规定的0.5mm~1.0mm的中级砂,需要对GB/T17671-1999标准砂进行筛分,较为烦琐,且因称量误差、筛子误差导致检测不准;二是对比胶砂在用水l25ml时,其流动度未必在130mm~140mm范围之间,对比胶砂用水可能要多次调整;三是试验胶砂流动度达到130mm~140mm之间用水也要多次调整,可见GB/T1596-2005的方法达不到准确快速检验的目的。
6.商品混凝土的许多性能由外加剂来调节,水泥的需水量与初凝时间相比,外加剂减水率与缓凝时间对商品混凝土性能的影响小得多。减水率差的外加剂用于商品混凝土,为使坍落度不变,需增加用水量或调整外加剂掺量。测量外加剂净浆流动度一般能反映外加剂减水率高低,但有时会引起误判,陈化时间较长的水泥,其正电性较小,适应性较好,初始净浆流动度较大,1小时净浆流动损失很小。笔者多次做过试验,用同样批次的外加剂测量新鲜水泥的净浆流动度为l63mm,1小时后流动度为68mm,该水泥陈化21天再测净浆流动度达240mm,差距很大。所以检测外加剂用水泥应为新鲜并冷却至室温的水泥,总之检测外加剂注意水泥的时效性,比较准确的是拌制商品混凝土,但较费时,我们一般检测外加剂砂浆减水率。测定一定掺量外加剂胶砂达到基准胶砂流动度时用水量。
❺ 建筑材料检测取样方法有哪些
建筑材料检测取样方法有哪些
材料检测是对原材料的成分分析、测量、无损伤检测和环境模拟测试等,有些检测还涉及分析机体的体液、组织和排泄物等材料中的环境污染及代谢产物的含量,以确定机体受环境污染的程度和受害的危险性,如生物检测就是这样。那么,下面是由我为大家整理的建筑材料检测取样方法,欢迎大家阅读浏览。
一、钢筋
钢筋进场时的验收:
钢筋进场时,应按照现行国家标准《钢筋砼用热轧带肋钢筋》GB1499等的规定抽取试件作力学性能检验,其质量必须符合有关标准规定。
验收方法:检查产品合格证、出厂检验报告和进场复验报告。
取样方法:按照同一批量、同一规格、同一炉号、同一出厂日期、同一交货状态的钢筋,每批重量不大于60t为一检验批,进行现场见证取样;当不足60t也为一个检验批,进行现场见证取样。试样分为抗拉试件两根,冷弯试件两根。实验室进行检验时,每一检验批至少应检验一个拉伸试件,一个弯曲试件。
试件长度:冷拉试件长度一般≥500mm(500~650mm),冷弯试件长度一般≥250mm(250~350mm)。(备注:取样时,从任一钢筋端头,截取500~1000mm的钢筋,再进行取样。)
冷拉钢筋:应进行分批验收,每批重量不大于20t的同等级、同直径的冷拉钢筋为一个检验批。
取样数量:两个拉伸试件、两个弯曲试件。
二、钢筋焊接
钢筋焊接在建筑施工中一般分为:闪光对焊、电阻点焊、电弧焊、电渣压力焊、预埋件T型接头埋弧压力焊、钢筋气压焊。
取样方法:
1、闪光对焊:在同一工作班内,由同一焊工完成的300个同级别、同直径钢筋焊接接头应作为一检验批。当同一台班内不足300个接头时也作为一个检验批。
其机械性能试验包括拉伸试验和弯曲试验,应从每批成品中切取6个试件,3个作拉伸试验,3个作弯曲试验。拉伸试件长度一般≥500mm(500~650mm);冷弯试件长度一般≥250mm(250~350mm)。
验收方法:
(1)接头处不得有横向袭纹;
(2)与电极接触处的钢筋表面,Ⅰ~Ⅲ级钢筋焊接时不得有明显烧伤;Ⅳ级钢筋焊接时不得有烧伤;负温闪光对焊时,对于Ⅱ~Ⅳ级钢筋,均不得有烧伤;
(3)接头处的弯折角不得大于4。;
(4)接头处的钢筋轴线偏移,不得大于0.1倍钢筋直径,同时不得大于2mm。
2、电阻点焊:凡钢筋级别、直径及尺寸均相同的焊接制品,即为同一类型制品,每200件为一批。
热轧钢筋点焊做抗剪试验,试件为3件,长度一般≥600mm;拔低碳钢丝焊点,除作抗剪试验外,还应对较小钢丝做拉伸试验,试件为3件,试件长度一般≥500mm(500~650mm)。
3、电弧焊:在现场安装条件下,每一楼层中以300个同类型接头(同钢筋级别、同接头类型、同焊接位置)作为一批,不足300个时,仍作为一批。
从每批成品中切取3个接头作拉伸试验,试件长度一般≥500 mm(500~650mm)。
4、电渣压力焊:在一般构筑物中,每300个同类型接头(同钢筋级别、同焊接位置)作为一批;在现浇砼框架结构中,每一楼层中以300个同类型接头作为一批。
从每批成品中切取3个接头作拉伸试验,试件长度一般≥500 mm(500~600mm)。
验收方法:
(1)接头焊包均匀,不得有流疱、裂纹,焊包自钢筋表面至其外边缘宽度≥2mm,厚度≥4mm;
(2)焊接时钢筋表面不得有明显烧伤,其零线不得接在构件主筋上;
(3)接头处的钢筋轴线偏移不得大于0.1倍钢筋直径,同时不得大于2mm。
(4)接头处的弯折角不得大于4。。
(备注:对焊接检验报告复查时,其焊接的力学性能必须大于或等于其原材的力学性能。本现场暂时未使用到预埋件T型接头埋弧压力焊及钢筋气压焊,因此不予赘述。)
三、水泥、砂石
1、水泥
水泥进场验收:水泥进场时应对其品种、级别、包装或散装仓号、出厂日期等进行检查,并应对其强度、安定性及其他必要的性能指标进行复验,其质量必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175等的规定。
当在使用中对水泥质量有怀疑或水泥出厂日期超过3个月(快硬硅酸盐水泥超过1个月)时,应进行复验,并按复验结果使用。
钢筋砼结构中严禁使用含氯化物的水泥。
检查数量及验收方法:按同一厂家、同一等级、同一品种、同一批号且连续进场的水泥,袋装不超过200t为一批,散装不超过500t为一批,每批抽样不少于一次。检查产品合格证、出厂检验报告和进场复验报告。
取样方法:水泥试样必须在同一批号不同部位处等量采集,取样试点至少在20点以上,经混合均匀用防潮容器包装,重量不少于12kg。
(备注:委托单位填写检验委托单时应逐项填写以下内容:水泥生产厂名、商标、水泥品种、强度等级、出厂编号或出厂日期、工程名称,全套物理检验项目等。)
(另注:水泥的强度报告一般先出3天强度报告,但28天强度报告,仍应要求施工单位报审,负在3天强度报告后。)
2、砂石
以400m3或600t为一个检验批,每验收批至少应进行颗粒级配、含泥量和泥块含量检验。
取样方法:在料堆水取样时,取样部位应均匀分布。在料堆的顶部、中部、底部各均匀分布的五个不同部位取得,组成一组样品,砂子在各部位抽取大致相等的8份,石子在各部位抽取大致相等的ཋ份。砂子为
Kg,石子为 Kg。
四、砼配合比
砂石、水泥送检的同时,进行砼配合比、砂浆配比的检验工作,一般是与砂石、水泥检验报告同期出示。在第一次使用配合比搅拌砼或砌筑砂浆时,应至少留置一组标准标养试件(标养条件:温度为20±3℃,相对湿度为90%,试件间距为10~20mm),作为验证配合比的依据。
五、建筑砂浆
1、水泥砂浆
验收方法:根据砂浆配比,对所搅拌的砌筑砂浆用砂的粒径、水泥用量、搅拌时间、砂浆和易性等进行检查验收。
取样方法:每一楼层或每250m3砌体中各种强度等级的砂浆,每台搅拌机至少应检查一次,每次至少应制作砂浆立方体(70.7mm立方体)抗压强度试块一组六块。当砂浆强度等级或配合比有变更时,还应另作试块。
做好的砂浆试块应在标准养护条件下进行“标养”(标养的条件是:水泥混合砂浆养护温度为20±3℃,相对湿度为60%~80%;水泥砂浆和微沫砂浆养护温度为20±3℃,相对湿度为90%以上;养护期间,试件彼此间隔不少于10mm)。当工地现场无“标准养护”时,可采用自然养护,或及早地将试模送往实验室进行“标养”(试块不得受震动)。
制作和送检试块时,均须持有见证员参加见证,试块送到实验室时,应认真填写好委托单,写明使用部位、砂浆种类、强度等级、工程名称、制作日期、配合比、稠度、养护条件等,检验报告出示后,不得要求更改有关内容。
监督砂浆试块制作注意事项:
1、制作砌筑砂浆试件时,应将其铁底模废弃不用,将无底试模放在预先铺有吸水性较好的纸的普通粘土砖上(砖的吸水率不小于10%,含水率不大于2%),试模内壁事先涂刷脱模剂。
2、放在砖的湿纸应为湿的新闻纸,砖的表面应平整。
3、振捣时,其捣棒应为(直径为10mm,长350mm的钢棒,端部磨圆),均匀由内而外螺旋方向差捣25次。
六、墙体材料
根据砖和砌块的生产方式、主要原料以及外形特征,砖和砌块可分为蒸压灰砂砖、烧结多孔砖等。
取样方法:
1、蒸压灰砂砖
每10万块为一批,不足10万块也为一批,但不得少于2万块。
强度检验的样品,从尺寸偏差、外观合格的样品中按随机抽样法抽取3组共15块(每组5块)。其中2组进行抗压强度和抗折强度检验,一组备用。
2、烧结多孔砖
每5万块为一批,不足该数量时仍按一批。
强度检验的样品,从尺寸偏差和外观质量检查合格中按随机抽样法抽取,共15块。抗压强度、抗折荷重检验各5块,备用5块。
七、基本回填材料
土作为常用基础回填材料,在建筑中被广泛应用。
取样方法:
(一)取样数量
土样取样数量,应依据现行国家标准及所属地区或现行标准执行。
1、依据《建筑工程质量检验评定标准》取样
(1)填方和柱基、基坑、基槽、管沟的回填
a、柱基回填:抽取柱基总(个)数的10%,但不少于5个;
b、基槽和管沟回填:每层按长度20~50m取样1组,但每层不少于1组;
c、基坑和室内回填:每层按100-500m2取样1组,但每层不少于1组;
d、场地平整填方:每层按400~900m2取样1组,但每层不少于1组。
(2)灌砂或灌水法的所取数量可适当减少。
2、依据上海市标准《地基处理技术规范》取样
(1)整片垫层
a、面积≤300m2时:环刀法为30~50m2布置一个;贯入法为10~15 m2布置一个。
b、面积≥300m2时:环刀法为50~100m2布置一个;贯入法为20~30 m2布置一个。
(2)条形基础下垫层
a、参照整片垫层要求。
b、环刀法每20m至少布置一个;贯入法每5m至少一个。
(3)单独基础下垫层
a、参照整片垫层要求。
b、每个单独基础下垫层不少于两个测点。
(备注:1、现场取样必须是在见证人的监督下,由取样人员按要求在测点处取样,而取样、见证人员、必须时通过资格考核。
2、在见证人员陪同下,送样人应准确填写下述内容:委托单位、工程名称、试验项目、设计要求、现场土样的鉴别名称、夯实方法、测点标高、测点编号、取样日期、取样地点、填单日期、取样人、送样人、见证人以及联系电话等。同时还应附上测点平面图)
八、砼工程
取样方法:
(一)主控项目
1、结构混凝土的强度等级必须符合设计要求。用于检查结构构件混凝土强度的试件,应在混凝土的浇筑地点随机抽取。取样与试件留置应符合下列规定:
(1)每拌制100盘且不超过100m3的同配合比的混凝土,取样不得少于一次;
(2)每工作班拌制的同一配合比的混凝土不足100盘时,取样不少于一次;
(3)当一次连续浇筑超过1000m3时,同一配合比的混凝土每200m3取样不少于一次;
(4)每一楼层、同一配合比的混凝土,取样不少于一次;
(5)每次取样应至少留置一组标准养护试件,同条件养护试件的留置组数应根据实际需要确定。
检验方法:检查施工记录及试件强度实验报告。
2、对有抗渗要求的混凝土结构,其混凝土试件应在浇筑地点随机取样。同一工程、同一配合比的混凝土,取样不应少于一次,留置组数可根据实际需要确定。
检验方法:检查试件抗渗试验报告。
(二)一般项目
1、后浇带的留置位置应按设计要求和施工技术方案确定。后浇带混凝土浇筑应按施工技术方案进行。监理工程师应全数检查。
检查方法:观察、检查施工记录。
2、混凝土浇筑完毕后,应按施工技术方案及时采取有效的养护措施,并应符合下列规定:
(1)应在浇筑完毕后的12h以内对混凝土加以覆盖并保湿养护;
(2)混凝土浇水养护的时间:对采用硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥拌制的混凝土,不得少于7d,对掺用缓凝剂型外加剂或有抗渗要求的混凝土,不得少于14d;
(3)浇水次数应能保持混凝土处于湿润状态;混凝土养护用水应与拌制用水相同;
(4)采用塑料布覆盖养护的混凝土,其敞露的全部表面应覆盖严密,并应保持塑料布内有凝结水;
(5)混凝土强度达到1.2N/mm2前,不得在其上踩踏或安装模板及支架。
备注:
1、当日平均气温低于5℃时,不得浇水;
2、混凝土表面不便浇水或使用塑料布时,宜涂刷养护剂;
3、对大面积混凝土的养护,应根据气候条件按施工技术方案采取控温措施。
检查数量:全数检查。
检验方法:观察,检查施工记录。
;