导航:首页 > 安装方法 > 后测量方法

后测量方法

发布时间:2022-01-07 16:03:59

1. 全站仪用测站点和后视点进行其他点的测量的方法叫什么

1.这种方法叫做极坐标放样;
2.此外全站仪还有角度测量;
3.极坐标放样是全站仪用的最多的测量方法
望采纳,谢谢

2. 测量工时的方法有哪些测定后怎么做工时分析

标准工时的制定方法有多种,通常使用的方法有直接观察和间接方法。
直接观察主要有秒表测量法、模特法、简明工作因素法、视频分析法。其中模特法和简明工作因素法都是分解工作中员工的动作而定制的工时。
间接的度量有预定动作时间标准法、工作因素法等。
工时测量以及工时分析,所提到的都是基础ie工作,方法很多,主要是解决效率和精准度的问题,关于这点,现在有很多精益专家都是用软件辅助做,比如vioovi工时分析软件就不错的,楼主可以参考下。

3. α测量方法

我们知道,三个天然放射性系列中各有一个气体核素(222Rn、220Rn和219Rn),它们是氡的放射性同位素,称为射气。以测量射气及其短寿衰变子体产生的α粒子而建立起来的各种天然核辐射测量方法,总称为α测量方法。其中射气测量是一种瞬时测氡方法,其余方法(包括径迹测量、钋-210法、α卡法,活性炭法等),都是累积测氡方法。

12.2.1 射气测量

12.2.1.1 射气场的形成机制

岩、矿石中的镭(226Ra、224Ra、223Ra)经α衰变可不断生成射气,其中对α测量最有意义的射气是氡(222Rn)。氡的一部分可以析出到岩(矿)石的孔隙和裂隙中,成为自由氡。这样就在岩(矿)体周围形成一个氡浓度增高的地段。按照气体分子运动的规律,氡从浓度高处向浓度低处扩散,从压强大处向压强小处渗流,从温度高处向温度低处移动。于是,氡就从岩(矿)体向各个方向迁移,从地下深处向地表迁移。在迁移过程中氡还要按其衰减规律不断减少。因此,离开岩(矿)体后,氡的浓度不断降低,这样便形成了一个以岩(矿)体为中心,浓度由内向外,由深至浅逐渐降低的射气场。射气场的形成还受地下水、伴生气体(氧、二氧化碳、氮)、岩石破碎程度、孔隙度、气象条件等因素的影响。尤其是地下水的作用,可使铀、镭迁移至地表,并不断衰变成氡。实践证明,α测量方法的探测深度可达数百米,能提供较多的深部地质信息。

钍射气(220Rn)和锕射气(219Rn)也能形成各自的射气场,但它们的半衰期短,所形成的场仅限于岩(矿)体附近很小的范围。

12.2.1.2 射气测量工作方法

根据地质任务和对测区研究程度的不同,可将射气测量分为概查、普查和详查三个阶段。各阶段的比例尺和测网布置与地面γ测量一致,不再赘述。

射气测量的仪器称为测氡仪,其工作原理与γ辐射仪类似,如图12-9所示。先在测点上打深约0.5~1m的取气孔,再将取气器埋入孔中,用唧筒将土壤中的氡吸入测氡仪的探测器中,然后经光电倍增管转换为电脉冲信号进行测量。测量完毕后立即排气,然后移至下一测点,逐点进行测量。

图12-9 射气测量工作过程示意图

不同地区观测的射气浓度有各自的底数,高于底数1.5~3倍的浓度值称为异常。由于氡(222Rn)的半衰期比钍射气(220Rn)长得多,锕射气(219Rn)半衰期仅4s左右,其影响可不予考虑。因此,可用以下方法判断异常的性质:①若在最初5~10min内仪器读数不减小或读数反而增加,则认为异常为氡引起;②若1min后读数减小大约一半,则认为异常为钍射气引起;③若读数随时间增大而减少,但每隔1min减小量不到原读数的一半,则认为异常为氡、钍射气共同引起。

射气测量的重现性较差,但也应当进行一些检查测量,以了解异常的变化趋势是否改变,异常位置是否大致可靠等。

12.2.1.3 射气测量数据的整理及图示

野外工作中,在测点读数的是测氡仪的计数率或指针偏转的格数,应按下式将其换算为射气浓度ρ(Bq/l)

勘查技术工程学

式中M为仪器的测程系数,用数字显示式仪器时,M=1;I为仪器读数(cpm或格);JR为仪器标定系数(Bq/(L·cpm)或Bq/(L·格))。

铀、钍混合异常点的读数为222Rn和220Rn浓度之和。利用停止抽气后t1时刻的读数n1和t2时刻的读数n2,可以按下式分别计算222Rn和220Rn的浓度ρ(Rn)和ρ(Th)

勘查技术工程学

式中ρ1、ρ2分别为用停止抽气后t1、t2时刻的读数按(12.2-1)式计算的总浓度;P1、P2分别为 t 1、t 2 时刻222 Rn的增长率分别为 t 1、t 2 时刻220 Rn的衰减率。

解上述联立方程组,得到

勘查技术工程学

根据(12.2-3)和(12.2-4)式可计算222Rn和220Rn浓度的比值K,即

勘查技术工程学

式中C=ρ2/ρ1。为方便起见,可根据(12.2-5)式做出K-C曲线量板或K-C值换算表。实际工作中,根据读数算出C值后,就可利用量板或换算表直接得到K值。

利用统计方法还可以确定射气底数和异常下限。

射气测量的成果图件有射气浓度剖面图、剖面平面图、等线值平面图,以及氡、钍射气浓度比等值线平面图等。

12.2.1.4 射气测量的应用

与γ测量相比,射气测量具有较大的探测深度,但仪器较笨重,工作效率较低。此外,气候、地形、土壤层结构,以及某些物质(岩石、粘土、腐殖质等)的吸附作用,都能影响射气异常,使之复杂化,给异常解释造成困难。

射气测量主要用于寻找浮土覆盖下的铀、钍矿体,圈定构造带或破碎带,划分岩层接触界线,勘查浅层裂隙水等。

12.2.2 α径迹测量

12.2.2.1 α径迹测量的原理

重带电粒子(质子、α粒子、重离子、宇宙射线)或核辐射碎片射入固体绝缘材料中时,在它们通过的路径上会造成辐射损伤,留下微弱的痕迹,其直径为10 nm,长为10~100 nm左右,称为潜迹。潜迹只有在电子显微镜下才能观察到。如果把这种受到辐射损伤的材料放入强酸或强碱溶液中浸泡,则损伤部分就会较快地发生化学反应,并溶解到溶液中。扩大后的潜迹直径可达20μm左右,它们就是粒子射入物质中形成的径迹,在光学显微镜下可观测到粒子的径迹。由此可见,采用某些固体绝缘材料能记录重带电粒子,这类材料称为径迹探测器。可作为径迹探测器的材料包括云母、石英等结晶固体,各种玻璃等非结晶固体,以及硝酸纤维(CN)、醋酸纤维(CA)、聚碳酸酯(PC)、稀丙基二甘醇碳酸酯(ADC)等。

实际工作中,为了测量α粒子形成的径迹,要将探测器置于探杯内,并埋入地表土壤层中。记录到的主要是铀矿体及其原生晕和次生晕中的氡放出的α粒子。这些氡通过扩散、对流、抽吸,以及地下水渗滤等复杂作用趋于地表并进入探杯,就在探测器上留下了氡及其各代子核素发射的α粒子所形成的潜迹。此外,探杯所接触的土壤层中的铀,以及钍系和锕铀系的α辐射体产生的α粒子也可被探测器接收。

记录α粒子潜迹常用的探测器材料是醋酸纤维和硝酸纤维薄膜,与之适应的蚀刻剂主要是氢氧化钠和氢氧化钾溶液。

12.2.2.2 α径迹测量工作方法、资料及图示

α径迹测量的工作程序是:①将探测器置于塑料杯底部,再按一定的网格,倒置在测点处30~40cm深的小坑中,上盖土封闭(图11-10);②约20天后取出杯中的探测器进行蚀刻;③用光学显微镜辨认和计算径迹的密度(单位为j/mm2)。

图12-10 累积法野外埋片示意图

当取得测区内大量径迹数据后,可利用统计方法确定该地区的径迹底数(正常场),据此划分正常场、偏高场、高场和异常场。径迹密度大于底数加均方差者为偏高场;加二倍均方差者为高场;加三倍均方差者为异常场。

α径迹测量的成果图件主要有:α径迹密度剖面图、剖面平面图和等值线平面图等。

12.2.2.3 α径迹测量的应用及实例

α径迹测量和射气测量一样,记录的都是氡放出的α粒子,它们的差别仅在于前者采用长时间累积测氡方式,而后者采用瞬时测氡方式。因此,α径迹测量与射气测量的应用范围一致,但其探测深度要大得多。这是因为,长期累积测量方式可使得深达200 m的铀矿体中所含的氡都扩散到探测器薄膜上,并达到一定的浓度,从而大大提高了灵敏度,均化了外来干扰影响,增加了探测深度,提高了地质效果。

某地印支期花岗岩区的岩体主要由中粗粒斑状黑云母花岗岩组成。铀矿化产于构造蚀变带内,且与赤铁矿化、绿泥石化密切相关。该区浮土较厚且覆盖广泛,γ测量效果很差。射气测量和α径迹测量都有异常显示,且后者更为明显(图12-11)。位于 F1 上盘的径迹密度峰值约200 j/mm2 ,宽20 m左右,并与峰值约50×3.7 Bq/L的射气异常吻合,推测为浅部矿化引起。在F1 出露部位附近出现的径迹异常峰值约100 j/mm2 ,宽30 m左右,与另一峰值约20×3.7 Bq/L的较弱射气异常位置有明显差距。推测射气异常只是 F1 构造出露部位的反映,而α径迹异常则是 F1 构造出露部位与深部矿化的综合反映。经钻孔揭露,在孔深95 m和180 m处分别见到两层矿体,其中浅部矿体已达到工业品位。

图12-11 某地地质物探综合剖面图

12.2.3 α卡法

α径迹测量是最先使用的累积测氡方法,其探测深度大的优点是γ测量和射气测量无法比拟的。但是,它最大的缺点是工作周期较长,干扰因素较多。α卡法是一种更先进的“短期”累积测氡方法。它是将α卡短期埋置后取出,测量卡上吸附的氡的子核素产生的α粒子,从而解决有关地质问题。如果将α卡做成杯状,利用这种α杯收集氡的子核素,就称为α杯法。α杯法测氡的灵敏度更高。

12.2.3.1 α卡工作原理

α卡是一种固体材料,固体表面的分子或原子未被其他相似分子或原子包围时,会存在未饱和价键力(称为范德华力),所以任何固体表面都有从周围气体中吸附分子、原子或离子的能力。这样,将固体卡片(或塑料杯)埋在地下,其表面就会吸附氡的子核素,形成放射性薄层。同时,氡的子核素多是带正电的,很容易附着在空气中的尘埃上,形成放射性气溶胶。α卡自身带负电,在电场力作用下,正离子会迅速聚集在α卡上,形成放射性薄层。

虽然氡也能被固体物质吸附,但α卡对氡的吸附能力较小。因此,可认为氡不会附着在α卡上。

实际工作中使用的α卡可用镀铝聚酯薄膜、铜片、铝片、橡皮或塑料制成。还有一种α卡由过氯乙烯细纤维制成,在制作过程中使其自身带有数百伏的静电(负)电压,因而称为静电α卡。静电α卡有较高的灵敏度,有利于发现微弱的异常。

12.2.3.2 α卡测量方法

α卡法与α径迹测量野外工作方法是类似的,埋卡方法见图12-10。α杯法只需埋置杯子,工作更为简便。

α卡法探测对象是氡的子核素218Po、214Po和212Po等α辐射体。218Po系222Rn直接衰变而来,半衰期为3.05min,经十倍半衰期,即30min左右,218Po积累的原子核数达最大。生成的核若得不到补充,再经30min就衰变完毕。214Po是218Po经多次衰变而来,衰变系列中214Pb的半衰期(26.8min)最长,故需10倍214Pb的半衰期,即4.5h,系列才能达到平衡。若218Po得不到补充,整个系列经4.5h时消失。212Po是220Rn的子核素212Pb经两次衰变而成,衰变系列中212Pb半衰期(10.6h)最长,故此系列需4.4d才能达到平衡。因此埋卡时间和测量时间不同,将得到不同的信息。埋0.5h后立即测量,探测的主要是218Po;埋卡4~5 h立即测量,得到的是218Po、214Po和212Po的贡献。若放置0.5 h后再测量,得到的是214Po和212Po的贡献。放置4 h后再测量,探测的则主要是212Po了。

根据上述分析,设取卡后立即测量取得的计数率为I1,其中222Rn的子核素(218Po、214Po等)引起的计数率为IRn220Rn的子核素(212Po等)引起的计数率为ITh,4 h后第二次α测量获得的计数率为I2。则有

勘查技术工程学

由于放射性系列平衡时,子核数量的变化应遵从半衰期最长的子核素衰变的规律,因此(12.2-7)式中的衰变常数λ应是212 Pb的衰变常数,λ=0.065/h。由于 t=4 h,≈1,故有ITh≈I2。代入(12.2-7)式,还可得到

勘查技术工程学

由(12.1-7)式和(12.1-8)式,有

勘查技术工程学

以上IRn+ITh、ITh、IRn、IRn/ITh四组数据在资料解释中是有实用价值的。

野外工作中,静电α卡埋置时间以4~6 h为宜,其他α卡埋置时间可大于12 h。同一地区埋卡时间应相同,取卡后应立即进行α测量。因为218Po、214Po等半衰期短,不尽快测量,它们会很快衰变掉。

由于α卡要有一定的总计数,因此当α卡上收集到的氡的子核素太少时,应适当延长测量时间,以保证数据的精度要求。找铀矿时,异常幅度大,α卡的灵敏度可以低些,观测时间可稍短。解决非铀矿地质问题时,由于异常幅度小,应采用灵敏度高的方法工作,否则测量α卡的时间将予延长。找铀矿时,220Rn(钍射气)的子核素产生的α射线常视为干扰因素,但在处理非铀矿地质问题时,220Rn的子核素和222Rn的子核素的α射线同样有价值,因此220Rn的子核素的信息不能废弃。

应当指出,氡的运移受多种因素的影响,规律比较复杂,使得测量结果重现性差。实践表明,尽管重复观测中数值会有改变,但异常的形状、曲线的趋势都是相似的。有时,重复测量中异常也会消失,说明该测点处氡的浓度变化很大,测点附近可能有构造存在。

条件允许时,在埋置α卡的坑中可同时进行孔中γ测量;还可将坑中的土样取回进行镭量测量。多种放射性测量资料的配合,有利于对α卡法异常做出正确的解释。

根据α卡法测量所得的数据,可以绘制α卡测量剖面图、剖面平面图和等值线平面图等。

12.2.3.3 α卡法的应用

α卡法比射气测量灵敏度高,探测深度大,又比α径迹测量生产周期短,因而在寻找铀、钍矿床及与放射性核素有伴生或共生关系的矿床,勘查地下水、圈定构造破碎带、划分岩层接触界线等方面都有广泛的应用。

12.2.4 钋-210法

钋-210法是测量岩样或土样中放射性核素210Po放出的α粒子的一种α测量方法。

12.2.4.1 钋-210法工作原理

在铀系中,氡(222Rn)之后有一个半衰期为22.3a的放射性核素210Pb。由于氡在迁移过程中不断发生衰变,逐渐积累210Pb,长时间后就形成了一个与氡基本处于平衡的210Pb分散晕,这一210Pb晕就代表了该处长时间内氡浓度的平均值。210Pb晕的特点是,即使在近地表,210Pb在土壤中的浓度也不受气候变化的影响。氡的数值则受气候、温度、季节的影响而变动。因此,测量土样中210Pb的量可以更准确地反映取样点的氡浓度。

210Pb是一个弱的β辐射体,而其后210Bi(半衰期为5d)的子核素210Po有较强的α辐射,半衰期长达138.4d,且它是所有放射性核素中最易形成胶体的核素。赋存在土壤中的210Po常以胶体状态沉淀或被吸附在土壤颗粒上或孔隙壁上不易流失,在土壤中形成稳定分布。因此测定210Po即可了解土壤中210Pb的情况,并间接推测母核素222Rn的分布规律。

210Po的化学性质与碲类元素相似,部分也与铋相似。金属钋及其氧化物易溶于浓盐酸和浓硝酸中,生成PoCl和Po(NO34溶液。用电化学方法可以从这些液中将210Po置换沉积在某种电极上。根据标准电极电位低的金属离子能置换标准电极电位高的金属离子的性质,可选择置换210Po的金属。210Po的标准电极电位为0.66V,与它能发生置换反应的金属有铜(0.34V)、铋(0.23V)、银(0.22V)、镍(-0.25V)等。例如,铜置换210Po的电化学反应为

勘查技术工程学

能够置换210Po的金属可作为收集210Po的探测器。

由于电化学性质不同,铀、钍、铅、铋等元素都不能像钋那样被置换沉积在铜片上。钋的其他6个同位素都是短寿的(半衰期<3min),只有210Po是长寿的。因此,这种置换方法一般都能有效地排除其他天然放射性同位素对210Po测量的干扰(仅Ra有时会成为干扰)。

12.2.4.2 钋-210测量方法

钋-210测量分为野外和室内两部分。

野外工作中,首先要根据工作任务、地质和地球物理特征,选择地质条件有利,盖层较厚和露头不发育地区作为测区,按一定的工作比例尺布置测网。然后逐个测点挖取重约50 g的土壤样品。取样时要拨开地表腐殖层,取离地表数十厘米深处的土壤,同一地区取样深度应一致。

室内工作包括样品的化学处理和测定探测器的α射线计数率。简要步骤如下。

1)将土壤干燥、碾碎,过40目筛,称取20 g备用。

2)取5 g细粒土样,连同0.5 g抗坏血酸和预先准备好的带浮圈的铜片,一起放入100 mL的烧杯内,加入含有2%~3%柠檬酸的2mol/L的HCl溶液20 mL。

3)在水平振动的摇床上振荡3~4 h,从烧杯中取出铜片,用清水洗净,再用滤纸将铜片吸干,即制成样片。

4)将样片放置30min后,即可用α辐射仪进行测量,每个样片的读数时间不应少于10min。

5)若样片放置时间超过数天,则按下式修正读数

勘查技术工程学

式中:I为修正后的计数率;I1为实测计数率;λ为210Po的衰变常数,λ=5×10-3/d,t为样片放置的天数。

6)每天工作前后要检查仪器本底,还要用α工作源检查α辐射仪的日常工作稳定性,以确保测量数据可靠。

钋-210法的资料整理与其他核测量方法相同。成果图件有:钋量剖面图、剖面平面图、等值线平面图、相对等值线平面图等。

12.2.4.3 钋-210法的应用及实例

钋-210法只在野外取样,分析工作全在室内进行,设备简单,工作效率高,探测深度大,不受铀、钍干扰,异常重现性好。因此,除用于寻找铀、钍矿床外,还在地下水、地热及油气田普查中取得了良好的地质效果。

图12-12为在某军干休所测得的210Po曲线。该地段出露第四系更新统(Qp)的冰水堆积,曲线的低值异常宽约20 m,长约50 m。经综合分析认为,它与下部自流井组中的构造破碎带有关。钻探发现,含水层位为自流井组马鞍山段中的砂岩,地下水流量为76t/d。

图12-12 1号供水井210Po测量剖面图

4. 钢筋断后标距怎么测量

钢筋的伸长率我们一般只检测标距伸长率,钢筋的标距为5倍的钢筋直径,现在我们国产的钢筋直径都为五的倍数,较为简单的方法是:在钢筋样品上用标距打点机在除了夹头的全长范围内每间隔1cm打点一个,待拉断后根据钢筋的拉前标距点数找出范围,用游标卡尺量测距离(精确到0.25mm),断后标距减去断前标距长度除以断前标距就是伸长率。

5. 全站仪后方交会法详细步骤和高程测量的详细步骤有吗

1、角度测量(angle observation)
(1)功能:可进行水平角、竖直角的测量。
(2)方法:与经纬仪相同,若要测出水平角∠ AOB ,则:
1)当精度要求不高时:
瞄准 A 点——置零( 0 SET )——瞄准 B 点,记下水平度盘 HR 的大小。
2)当精度要求高时: —— 可用测回法( method of observation set )。
操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”( H SET )。
2、距离测量( distance measurement )
PSM 、PPM 的设置 —— 测距、测坐标、放样前。
1)棱镜常数(PSM )的设置。
一般: PRISM=0 (原配棱镜),-30mm (国产棱镜)
2)大气改正数( PPM )(乘常数)的设置。
输入测量时的气温( TEMP )、气压( PRESS ),或经计算后,输入 PPM 的值。
(1)功能:可测量平距 HD 、高差 VD 和斜距 SD (全站仪镜点至棱镜镜点间高差及斜距)
(2)方法:照准棱镜点,按“测量”( MEAS )。
3、坐标测量( coordinate measurement )
(1)功能:可测量目标点的三维坐标( X , Y , H )。
(2)测量原理 任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。。。

若输入:方位角 ,测站坐标( , );测得:水平角 和平距 。则有:
方位角:
坐标:
若输入:测站 S 高程 ,测得:仪器高 i ,棱镜高 v ,平距 ,竖直角 ,则有:
高程:
(3)方法:
输入测站 S ( X , Y ,H ),仪器高 i ,棱镜高 v ——瞄准后视点 B ,将水平度盘读数设置为 ——瞄准目标棱镜点 T ,按“测量”,即可显示点 T 的三维坐标。
4、点位放样 (Layout)
(1)功能:根据设计的待放样点 P 的坐标,在实地标出 P 点的平面位置及填挖高度。
(2)放样原理

1)在大致位置立棱镜,测出当前位置的坐标。
2)将当前坐标与待放样点的坐标相比较,得距离差值 dD 和角度差 dHR 或纵向差值Δ X 和横向差值Δ Y 。
3)根据显示的 dD 、dHR 或ΔX 、ΔY ,逐渐找到放样点的位置。
5、程序测量( programs )
(1)数据采集 (data collecting)
(2)坐标放样 (layout)
(3)对边测量(MLM)、悬高测量(REM)、面积测量(AREA)、后方交会(RESECTION) 等。
(4)数据存储管理。包括数据的传输、数据文件的操作(改名、删除、查阅)。
§ 7.2 TOPCON GTS-312 全站仪使用简介
一、仪器面板外观和功能说明
面板上按键功能如下:
——进入坐标测量模式键。
◢ ——进入距离测量模式键。
ANG ——进入角度测量模式键。
MENU ——进入主菜单测量模式键。
ESC ——用于中断正在进行的操作,退回到上一级菜单。
POWER ——电源开关键
◢ ◣ ——光标左右移动键
▲ ▼ ——光标上下移动、翻屏键
F1 、 F2 、 F3 、 F4 ——软功能键,其功能分别对应显示屏上相应位置显示的命令。
显示屏上显示符号的含义:
V ——竖盘读数;HR ——水平读盘读数(右向计数);HL ——水平读盘读数(左向计数);
HD ——水平距离; VD ——仪器望远镜至棱镜间高差; SD ——斜距; * ——正在测距;
N ——北坐标,x ; E ——东坐标,y ; Z ——天顶方向坐标,高程H 。
二、全站仪几种测量模式介绍
1、角度测量模式
功能:按 ANG 进入,可进行水平角、竖直角测量,倾斜改正开关设置。

第 1 页

F1 OSET :设置水平读数为:0°00ˊ00"。
F2 HOLD :锁定水平读数。
F3 HSET :设置任意大小的水平读数。
F4 P1↓: 进入第 2 页。

第 2 页

F1 TILT :设置倾斜改正开关。
F2 REP : 复测法。
F3 V% : 竖直角用百分数显示。
F4 P2↓: 进入第 3 页。

第 3 页

F1 H-BZ :仪器每转动水平角 90°时,是否要蜂鸣声。
F2 R/L :右向水平读数 HR/ 左向水平读数 HL 切换,一般用 HR 。
F3 CMPS :天顶距 V/ 竖直角 CMPS 的切换,一般取 V 。
F4 P3↓:进入第 1 页。
2、距离测量模式
功能:按 ◢ 进入,可进行水平角、竖直角、斜距、平距、高差测量及 PSM 、 PPM 、距离单位等设置。

第 1 页

F1 MEAS :进行测量。
F2 MODE :设置测量模式, Fine/coarse/tragcking(精测/粗测/跟踪)。
F3 S/A : 设置棱镜常数改正值( PSM )、大气改正值( PPM )。
F4 P1 ↓:进入第 2 页。

第 2 页

F1 OFSET :偏心测量方式。
F2 SO :距离放样测量方式。
F3 m/f/i :距离单位米 / 英尺 / 英寸的切换。
F4 P2↓: 进入第 1 页。
3、坐标测量模式
功能:按 进入,可进行坐标( N , E , H )、水平角、竖直角、斜距测量及 PSM 、 PPM 、距离单位等设置。

第 1 页

F1 MEAS :进行测量。
F2 MODE :设置测量模式, Fine/Coarse/Tracking 。
F3 S/A :设置棱镜改正值( PSM ),大气改正值( PPM )常数。
F4 P1↓:进入第 2 页。

第 2 页

F1 R.HT :输入棱镜高。
F2 INS.HT :输入仪器高。
F3 OCC :输入测站坐标。
F4 P2↓:进入第 3 页。

第 3 页

F1 OFSET :偏心测量方式。
F2 ———
F3 m/f/i: 距离单位米 / 英尺 / 英寸切换。
F4 P3↓:进入第 1 页。

4、主菜单模式
功能:按 MENU 进入,可进行数据采集、坐标放样、程序执行、内存管理(数据文件编辑、传输及查询)、参数设置等。
三、全站仪功能简介
测量前,要进行如下设置——按 ◢ 或 ,进入距离测量或坐标测量模式,再按第 1 页的 S/A ( F3 )。
1、棱镜常数 PRISM 的设置——进口棱镜多为 0 ,国产棱镜多为-30mm。(具体见说明书)
2、大气改正值 PPM 的设置——按“ T-P ”,分别在“ TEMP. ”和“ PRES. ” 栏,输入测量时的气温、气压。(或者按照说明书中的公式计算出 PPM 值后,按“ PPM ”直接输入)。
说明: PRISM 、 PPM 设置后,在没有新设置前,仪器将保存现有设置。
(一)角度测量
按 ANG 键,进入测角模式(开机后默认的模式),其水平角、竖直角的测量方法与经纬仪操作方法基本相同。照准目标后,记录下仪器显示的水平度盘读数 HR 和竖直度盘读数 V 。
(二)距离测量
先按 ◢ 键,进入测距模式,瞄准棱镜后,按 F1 ( MEAS ),记录下仪器测站点至棱镜点间的平距 HD 、镜头与镜头间的斜距 SD 和镜头与镜头间的高差 VD 。
(三)坐标测量

1、按 ANG 键,进入测角模式,瞄准后视点 A 。
2、按 HSET ,输入测站 O 至后视点 A 的坐标方位角 。
如:输入 65.4839 ,即输入了 。
3、按 键, 进入坐标测量模式。按 P↓, 进入第 2 页。
4、按 OCC ,分别在 N 、 E 、 Z 输入测站坐标( X0 ,Y0 ,H0 )。
5、按 P↓,进入第 2 页,在 INS.HT 栏,输入仪器高。
6、按 P↓,进入第 2 页,在 R.HT 栏,输入 B 点处的棱镜高。
7、瞄准待测量点 B ,按 MEAS ,得 B 点的( XB ,YB ,HB )。
(四)零星点的坐标放样(不使用文件)
1、按 MENU ,进入主菜单测量模式。
2、按 LAYOUT ,进入放样程序,再按 SKP ,略过使用文件。
3、按 OOC.PT ( F1 ),再按 NEZ ,输入测站 O 点的坐标( X0 ,Y0 ,H0 );并在 INS.HT 一栏,输入仪器高。
4、按 BACKSIGHT ( F2 ),再按 NE/AZ ,输入后视点 A 的坐标( xA , yA );若不知 A 点坐标而已知坐标方位角 ,则可再按 AZ ,在 HR 项输入 的值。瞄准 A 点,按 YES 。
5、按 LAYOUT ( F3 ),再按 NEZ ,输入待放样点 B 的坐标( xB , yB,HB )及测杆单棱镜的镜高后,按 ANGLE( F1 )。使用水平制动和水平微动螺旋,使显示的 dHR=0°00ˊ00",即找到了 OB 方向,指挥持测杆单棱镜者移动位置,使棱镜位于 OB 方向上。
6、按 DIST ,进行测量,根据显示的 dHD 来指挥持棱镜者沿 OB 方向移动,若 dHD 为正,则向 O 点方向移动;反之若 dHD 为负,则向远处移动,直至 dHD=0 时,立棱镜点即为 B 点的平面位置。
7、其所显示的 dZ 值即为立棱镜点处的填挖高度,正为挖,负为填。
8、按 NEXT ——反复 5 、6 两步,放样下一个点 C 。后方交会法通常用在高精度测量设站中,因其具备足够检核条件而被广泛应用。
这种方法对仪器本身精度要求、稳定性非常高。

6. 用全站仪进行后方交绘的测量步骤是什么

不同型号的全站仪,其具体操作方法会有较大的差异。下面简要介绍全站仪的基本操作与使用方法
1.全站仪的基本操作与使用方法
1)水平角测量
(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。
(2)设置A方向的水平度盘读数为0°00′00″。
(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。
2)距离测量
(1)设置棱镜常数
测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。
(2)设置大气改正值或气温、气压值
光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。
(3)量仪器高、棱镜高并输入全站仪。
(4)距离测量
照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。
全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。
中国3S吧 3s8.cn

3)坐标测量
(1)设定测站点度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。
(3)设置棱镜常数。
(4)设置大气改正值或气温、气压值。
(5)量仪器高、棱镜高并输入全站仪。
(6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。

7. 特殊测量方法:(1)累积法:把尺寸很小的物体______起来,聚成可以用刻度尺来测量的数量后,再测量出它

(1)累积法:把尺寸很小的物体累积起来,聚成可以用刻度尺来测量的数量后,再测量出它的总长度,然后除以这些小物
体的个数,就可以得出小物体的长度.如测量细铜丝的直径,测量一页纸的厚度.
(2)替代法:有些物体长度不方便用刻度尺直接测量的,就可用其他物体代替测量.
如(a)怎样用短刻度尺测量教学楼的高度,请说出两种方法?
方法一:先用细线(或细绳)测量大楼的高度,然后再测量细线(或细绳)的长度.
方法二:由于大楼不能分割或攀登,可以借助于一长度可测的木杆或人自身的高度,根据
物体与影长构造出两个相似三角形,然后利用相似三角形的性质求得大楼的高度.
(b)怎样测量学校到你家的距离?
可以先测量你一步的步距长度,比如每个步距是L;然后数出从你家走都学校的步次数n,就可以得出你家到学
校的距离:s=nL.
(c)怎样测地图上一曲线的长度?
先用一条细棉线按照曲线走向对齐,再将棉线拉直,用刻度尺测出棉线的长度,最后根据地图上的比例尺计算
出曲线的实际长度即可.
故答案为:(1)故答案为:累积;总长度;除以;个数.
(2)(a)方法一:先用细线(或细绳)测量大楼的高度,然后再测量细线(或细绳)的长度.
方法二:由于大楼不能分割或攀登,可以借助于一长度可测的木杆或人自身的高度,根据
物体与影长构造出两个相似三角形,然后利用相似三角形的性质求得大楼的高度.
(b) 可以先测量你一步的步距长度,比如每个步距是L;然后数出从你家走都学校的步次数n,就
可以得出你家到学校的距离:s=nL.
(c) 先用一条细棉线按照曲线走向对齐,再将棉线拉直,用刻度尺测出棉线的长度,最后根据地图
上的比例尺计算出曲线的实际长度即可.

8. 经纬仪使用方法:请问后后前前那种测量角的方法,请说出详细的操作步骤,和弊端。

首先整平对中仪器,前后站棱镜或脚架整平对中
首先正镜(盘左)精确对准后视棱镜,水平角置零,并记录,在倒镜(盘右)精确对准后视棱镜读取水平角,并记录。
转动仪器正镜(盘左)对准前视棱镜 准确对准后记录水平角,再倒镜(盘右)精确对准前视棱镜读取水平角,并记录

这种方法仪器测角精度较低,人为引起的误差无法消除。

9. 利用全站仪后交测量法确定未知点,求具体操作方法与计算公式(最好有过程)稍微详细点本人初学测量,谢谢

在P点设测站,A、B分别为目标。先测量A,输入坐标及标高,瞄准后确定,保存后会提示测量另一点坐标,瞄准B,输入坐标及标高,瞄准确定,当即显示输入仪高,输入后确定就出现P点坐标了。后方交会最好多用几个点来测,光两点不是很准确,建议至少三点以上。希望对你有帮助!

阅读全文

与后测量方法相关的资料

热点内容
简单的音标发音方法 浏览:247
政府解决外部性时采取哪些方法 浏览:783
男士皮带打结方法图解步骤 浏览:251
鉴别植物最好方法 浏览:221
开办零售药店的难题及解决方法 浏览:200
研究问卷的方法有哪些 浏览:440
如何将数学概念具体化的方式方法 浏览:922
图像修饰都有哪些方法 浏览:144
肝腹水用哪些方法能治愈 浏览:62
手语训练方法和口诀 浏览:339
夏季女士挽头发最简单的方法 浏览:692
可以用什么方法测试电瓶 浏览:738
中通轮使用方法 浏览:452
水泥管与混凝土连接方法 浏览:629
室外空翻训练方法 浏览:887
如何自制山楂酱的制作方法 浏览:858
凉皮和面的方法与步骤 浏览:539
快速拖延任务的方法 浏览:567
稿酬怎么计算方法 浏览:534
u型管窗帘安装方法 浏览:662