Ⅰ 开方的计算方法
开平方运算也即是开平方后所得的数的平方即原数,也就是说开平方是平方的逆运算。
例:求256的平方根
第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。
例,第一步:将256,分成两段:
2,56
表示平方根是两位数(XY,X表是平方根十位上数,Y表示个位数)。
第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。
例:左边第一段数值是2,2的平方根是大约等于1.414(这些尽量要记得,100以内的,尤其是能开整数的),由于2的平方根1.414大于1和小于2,所以取整数部分是1作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是1。
第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
例:第一段数里的数是2.第二步计算出最高数是1
2减去1的平方=1
将1与第二段数(56)组成一个第一个余数:156
第四步:把第二步求得的最高位数(1)乘以20去试除第一个余数(156),取所得结果的整数部分作为第一个试商。
例: 156除以(1乘20)=7.8
第一个试商就是7
第五步:第二步求得的的最高位数(1)乘以20再加上第一个试商(7)再乘以第一个试商(7)。
(1*20+7)*7
如果:(1*20+7)*7小于等于156,则7就是平方根的第二位数.
如果:(1*20+7)*7大于156,将第一个试商7减1,即用6再计算。
由于:(1*20+6)*6=156所以,6就是第平方根的第二位数。
例:求55225的平方根
第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。
例,第一步:将55225,分成三段:
5,52,25
表示平方根是三位数(XYZ)。
第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。
例:左边第一段数值是5,5的平方根是(2点几)大于2和小于3,所以取整数部分是2作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是2。
第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
例:第一段数里的数是5.第二步计算出最高数是2
5减去2的平方=1
将1与第二段数(52)组成一个第一个余数:152
第四步:把第二步求得的最高位数(2)乘以20去试除第一个余数(152),取所得结果的整数部分作为第一个试商。
例: 152除以(2乘20)=3.8
第一个试商就是3
第五步:第二步求得的的最高位数(2)乘以20再加上第一个试商(3)再乘以第一个试商(3)。
(2*20+3)*3
如果:(2*20+3)*3小于等于152,则3就是平方根的第二位数.
如果:(2*20+3)*3大于152,将第一个试商3减1,即用2再计算。
由于:(2*20+3)*3小于152所以,3就是第平方根的第二位数。
第六步:用同样的方法,继续求平方根的其他各位上的数。用上一个余数减去上法中所求的积(即152-129=23),与第三段数组成新的余数(即2325)。这时再求试商,要用前面所得到的平方根的前两位数(即23)乘以20去试除新的余数(2325),所得的最大整数为新的试商。(2325/(23×20)的整数部分为5。)
7.对新试商的检验如前法。(右例中最后的余数为0,刚好开尽,则235为所求的平方根。)
Ⅱ 开平方根的方法和步骤是什么
开平方根的方法和步骤如下:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数。
2、根据左边第一段里的数,求得平方根的最高位上的数。
3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
4、把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商。
5、用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试。
6、用同样的方法,继续求平方根的其他各位上的数。
Ⅲ 怎么开平方根. 就是那种列竖式算的. 详细步骤
1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
2.求不大于左边第一节数的完全平方数,为山枯“商”;
3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数逗态洞作为第一个余数;
4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用闭渣9或8作试商);
5.用商乘以20加上试商再乘以试商.如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止;
6.用同样的方法,继续求.
上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了.我们可以采取下面办法,实际计算中不怕某一步算错!而上面方法就不行.
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表.
我们计算0.5*(350+136161/350)得到369.5
然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1.我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了.再举个例子:计算469225的平方根.首先我们发现600^2