⑴ 单接晶体管如何正确测量
器件测量
如图3所示,测量用的场效应管多晶硅栅极宽度为4微米(与沟道长度对应),金属栅极宽度也为4微米,沟道宽度为20微米。有两种测量阈值的方法:第一种方法是将一个栅极设置为固定的高电压偏置,然后调节另一个栅极电压;第二种方法是调节第二栅极的电压使得它与被测试栅极上的电压维持在一个固定的电压差值。由于我们测试中使用的HP4156测试仪电压限制为100V,因此我们使用的是第一种方法。因此,如图4所示,为了测量多晶硅栅区的电压阈值,就将金属栅极连接到+100V,然后在保持源极电压为100mV的情况下,调节多晶硅栅极电压,直到100V。阈值电压可按照标准的方法从最陡的线与1:V曲线的投影确定。这样做的优点是非常简单,并且仅要求两个场阈值都低于电源电压。但这样做的一个缺点是金属场效应管起到限流的作用,只有在金属场效应管设定的限制以内才能获得正常的晶体管特性。交换多晶硅和金属栅极,将多晶硅栅极连接到100V,然后调节金属栅极电压,直到100V。由于多晶硅栅极与输出耦合在一起,因此可在更宽的电流范围内获得正常的晶体管特性。
测量结果
在Vd=0.1V和Vg2=100V,Vg1从0调节至100V时的典型晶体管参数示于图5,其中(a)NMOS、g1=多晶硅栅极;(b)NMOS、g1=金属栅极;(c)PMOS、g1=多晶硅栅极;(d)PMOS、g1=金属栅极。每种情况下,g2对应的都是另外一个栅极,对于PMOS器件,极性是反的。金属区的阈值为95V,而多晶硅的阈值为22V(N)和-20V(P)。
分析
尽管阈值电压可相对容易地确定,但沟道转移特性或每个晶体管的增益则必须进行更为仔细的计算才能得到。利用双晶体管的经典MOSFET方程,结合低漏极电压条件,并假设体效应和漏极电压影响很小(虽然对于场效应管的体效应可能并不可忽略。),则复合漏极电流与栅极电压的关系可表示为:
ld={ _{1} _{2} C_{OX1} C_{OX2}(V_{g1}-V_{t1})(V_{g2}-V_{t2})({W_{1}}\over{L_{1}})({W_{2}}\over{L_{2}})}\over{ _{1} C_{OX1}(V_{g1}-V_{t1})({W_{1}}\over{L_{1}})+ _{2} C_{OX2}(V_{g2}-V_{V_{t2}})({W_{2}}\over{L_{2}})} V_{d}
可以利用逐次逼近的迭代法解这一方程得到转移特性。由于沟道宽度是一个常数(在一阶意义下),可从分子和分母同时消去,而沟道长度则采用图中最初给出的数据(L多晶硅=4微米和L金属=8微米)。阈值如前所述得出,但经过迭代可得到更好的一组阈值。我们假设氧化层厚度也是可从工艺信息中获得的。不同的转移特性项允许从栅极偏置电压中求出不同的递降效应,
_{X}={ _{0}}\over{1+ (V_{gx}-V_{tx})}
其中,取0为针对特定技术的常数,x表示多晶硅或金属栅极。更好的解决方案是通过使一个栅极偏置在比另一个栅极高固定电压值的更高电压上进行测量,然而再交换两相栅极进行测量。但如果测量工具限制测量电压为100V,正如我们的情况一样,就无法做到这一点,但利用容许电压范围更宽的测试仪器,则可以相对容易地解出晶体管增益。对于所评估的0.35微米COMS技术,测试仪器所需要的额外电压范围也仅有20V左右。
⑵ 结构缺陷的测试方法
结构缺陷测试方法:
首先是用红外线检测方法。根据温度的不同,检测结构的是否完整,还有就是激光检测方法,可以实现无污染、大面积检测,还有散斑检测和红热成像检测,在红外检测中形成对比度进行结构检测。
x射线内部缺陷检测标记系统,配备多功能自动控制单元,自动采集转换模块、远程监控模块、声光预警和非接触标记等技术单元,能够有效监控钢丝绳芯输送带使用过程中的情况,防止因输送带撕裂、损伤影响正常生产,避免更大的安全事故。本系统适应高产矿山、井巷采掘、繁忙物流、连续运输等复杂工况和在线实时远程监测的高水平管理需要,是目前国内最先进的智能化监测设备。
一、技术简介
x射线内部缺陷检测标记系统能真正能做到X射线在线图像监测,具有如下优点:
1.实时动态显示整条输送带的透视图像,直观性和及时性极高;
2.当某处输送带有问题时,如钢丝绳锈蚀、断芯、断股、偏移、接头抽动、移位以及橡胶撕裂等,系统就会出现声光报警,如果说报警的准确率只有95%的话,那么看了图像以后你就能100%判断问题所在。同时系统在危险度高的输送带位置,做一个标记,在标记处可以修补,延长运输带使用寿命;
3.所有图像都可储存,你可以翻开当天或历史图像,全面仔细浏览整条输送带,了解输送带当前的整体状态;
4.图像可进行增强、放大、黑白切换、彩色显示、锐化显示,方便用户对可疑区域进行仔细分析
5.监视图像和数据通过局域网可上传到地面监控中心,管理人员通过图像终端显示设备,对输送带的使用情况状态了如指掌;
6.连续监测,也可以选择自动按时监测,设置灵活,操作简单。
二、五大独有优势
1.智能定损总成技术
判断损伤:通过图像智能模糊识别法确定损伤,并将损伤分级。
控制机构:判别结果转化为可硬件控制的命令。
执行机构:将报警信号转化为清晰标记,修补时一眼就能找到损伤位置。非接触的标记技 术,不会造成输送带二次损伤。
2.高效稳定的采传控技术
微弱信号数据采集:该模块实现了线阵X射线数据采集的功能,直接将微弱的x射线信号量化为数字信号。
海量数据传输:量化后的数据通过端到端式专用以太网络高速传输至处理计算机。
自动控制模块:是连接计算机和电气装置的中枢神经,保证系统电气和机械装置的良好稳定运作。
3.灵活多样的监控周期设定技术
自动优化监控周期:根据条件,综合运输带历史周期检测的结果,自动调整下次检测的周期,延长设备本身的保养时间。
自定义监控周期:客户根据自身的需要和习惯,自行定义监控周期。
4.无限扩展的网络集中监控技术
无论井下有多少台设备,都可以组成一个局域网络或者接入到已有井下环网中去,在地面监控中心使用一台终端服务器就可以管理和监控所有的井下设备。方便高效管理,节约硬件和人员成本。
5.核心软硬件研发团队,完全自主知识产权
本公司的核心研发人员多名,都是研究生以上学历,在各自的专业领域有十多年的工作经验。对图像处理,电子、电气等智能控制领域具有非凡的领悟力和创造力。有核心团队才有核心技术,才有创新性,才有竞争力!
⑶ 怎么半导体中测量电子的有效质量
用FN振荡电流的极值,测量电子在薄栅MOS结构的栅氧化层中的平均有效质量方法.利用波的干涉方法来处理电子隧穿势垒的过程,方便地获得了出现极值时外加电压和电子的有效质量之间的分析表达式.我有这方面的一个资料。
⑷ 涂层测厚仪测量厚度方法具体有那些
涂层测厚仪是一种便携式测厚仪,能快速、无损伤、精密地测量涂层、镀层的厚度;可用于工程现场,也可用于实验室,通过不同探头的使用,更可满足多种测量需求,涂层测厚仪广泛应用于制造业、金属加工业、化工业、商检等检测领域;是材料保护专业必备的仪器。涂层测厚仪它采用计算机技术,无损检测技术等多项先进技术,无需损伤被测体就能jing确地测量出它的厚度。F型探头可直接测量导磁材料(如铁 、镍)表面上的非导磁覆盖层厚度(如: 油漆 、塑料 、搪瓷 、铜 、铝、锌 、铬等)。可应用于电镀层、油漆层、搪瓷层 、 铝瓦 、铜 瓦 、巴氏合金瓦 、磷化层、纸张的厚度测量,也可用于船体油 漆及水下结构件的附着物的厚度测量。NF型探头可测量非导磁金属基体上的绝 缘覆盖层厚度,如铝、铜、锌、无磁不锈钢等材料表面上的油漆、塑料、橡胶涂层,也可测量铝或铝合金材料的阳极氧化层厚度。下面就为大家介绍涂层测厚仪测量厚度的5种方法:
1.磁性测厚法:适用导磁材料上的非导磁层厚度测量。导磁材料一般为:钢\铁\银\镍。此种方法测量jing确
2.涡流测厚法:适用导电金属上的非导电层厚度测量,此种方法较磁性测厚法精度低。
3.超声波测厚法:目前国内还没有用此种方法测量涂镀层厚度的,国外个别厂家有这样的仪器,适用多层涂镀层厚度的测量或则是以上两种方法都无法测量的场合.但一般价格昂贵、测量精度也不高。
4.电解测厚法:此方法有别于以上三种,不属于无损检测,需要破坏涂镀层,一般精度也不高,测量起来较其他几种麻烦。
5.放射测厚法:此种仪器价格非常昂贵(一般在10万RMB以上),适用于一些特殊场合。
⑸ 想了解下PCB打样测试的方式
当前常用检测方法如下:
1. 人工目测:
使用放大镜或校准的显微镜,利用操作人员视觉检查来确定电路板合不合格,并确定什么时候需进行校正操作,它是最传统、最主要的检测方法。它的主要优点是低的预先成本和没有测试夹具,而它的主要缺点是人的主观误差、长期成本较高、不连续的缺陷发觉、数据收集困难等。目前由于PCB的产量增加,PCB上导线间距与元件体积的缩小,这个方法变得越来越不可行。
2. 在线测试(ICT,In Ciruit Testing)
ICT通过对电性能的检测找出制造缺陷以及测试模拟、数字和混合信号的元件,以保证它们符合规格,己有针床式测试仪(Bed of Nails Tester)和飞针测试仪(Flying Probe Tester)等几种测试方法。ICT的主要优点是每个板的测试成本低、数字与功能测试能力强、快速和彻底的短路与开路测试、编程固件、缺陷覆盖率高和易于编程等。主要缺点是,需要测试夹具、编程与调试时间、制作夹具的成本较高,使用难度大等问题。
3. 功能测试(Functional Testing)
功能系统测试是在生产线的中间阶段和末端利用专门的测试设备,对电路板的功能模块进行全面的测试,用以确认电路板的好坏。功能测试可以说是最早的自动测试原理,它基于特定板或特定单元,可用各种设备来完成。有最终产品测试(Final Proct Test)、最新实体模型(Hot Mock-up)和“堆砌式’’测试(‘Rack and Stack’ Test)等类型。功能测试通常不提供用于过程改进的脚级和元件级诊断等深层数据,而且需要专门设备及专门设计的测试流程,编写功
能测试程序复杂,因此不适用于大多数电路板生产线。
4. 自动光学检测
也称为自动视觉检测,是基于光学原理,综合采用图像分析、计算机和自动控制等多种技术,对生产中遇到的缺陷进行检测和处理,是较新的确认制造缺陷的方法。AOI通常在回流前后、电气测试之前使用,提高电气处理或功能测试阶段的合格率,此时纠正缺陷的成本远远低于最终测试之后进行的成本,常达到十几倍。
5. 自动X光检查(AXI,Automatic X-ray Inspection)
AXI利用不同物质对X光的吸收率的不同,透视需要检测的部位,发现缺陷。主要用于检测超细间距和超高密度电路板以及装配工艺过程中产生的桥接、丢片、对准不良等缺陷,还可利用其层析成像技术检测IC芯片内部缺陷。它是现时测试球栅阵列(BGA,Ball Grid Array)焊接质量和被遮挡的锡球的唯一方法。在最新的用于线路板组装的AXI系统中,如Feinfocus,Phoenix Xray等公司的最新产品,不仅可以进行2D的透视检测,通过样品倾斜,“侧视”的X光甚至可以给出3D的检测信息。它的主要优点是能够检测BGA焊接质量和嵌人式元件、无夹具成本;主要缺点是速度慢、高失效率、检测返工焊点困难、高成本、和长的程序开发时间。
6. 激光检测系统
它是PCB测试技术的最新发展。它利用激光束扫描印制板,收集所有测量数据,并将实际测量值与预置的合格极限值进行比较。这种技术己经在光板上得到证实,正考虑用于装配板测试,速度己足够用于批量生产线。快速输出、不要求夹具和视觉非遮盖访问是其主要优点;初始成本高、维护和使用问题多是其主要缺点。
从上面的6种目前常用的PCB检测手段,可以发现AOI自动光学检测设备和任何基于视觉的检测系统一样,只能检测用视觉可以看出的故障,对于短路和断路之类的瑕疵,只能用电气测试法来加以解决。相对人的肉眼这种原始的视觉检测手段,AOI是自动化的检测手段,其检测的效率高许多,和可靠性也稳定得多。