导航:首页 > 安装方法 > 设备安装时找虚角方法

设备安装时找虚角方法

发布时间:2023-11-24 16:55:20

⑴  专业机械设备的安装实例

一、颚式破碎机的安装

颚式破碎机(见图3-3)构造简单,在陶瓷及非金属矿产品加工厂中广泛应用,是粗碎不可缺少的设备。小型鄂式破碎机在制造厂已组装整体,可采用整体安装。安装前必须检查设备制造质量,按装箱单清点部件、配件数量,在运输过程中有无撞损等。随之测量机架地脚螺栓孔中心尺寸,并作出记录,以便校正基础地脚螺栓孔中心尺寸。

颚式破碎机安装顺序:

1.基础划线

根据工艺布置的设计尺寸,对照设备地脚螺栓孔实际尺寸在基础上划出中心十字线(图10-9);

图10-9颚式破碎机基础划线

1-250×500颚式破碎机基础;2-道木;3-电动机基础

2.基础标高符合设计要求

基础与垫木(道木)的接触面应铲平。垫木最好选用榆木,使设备在运转过程中起到减震作用。

3.整体吊装

设立两木搭用倒链(神仙葫芦)或用绞车,将颚式破碎机吊在基础上,找正中心位置,拧紧地脚螺母,再在偏心轴头上测水平,根据实测的误差,松开地脚螺母进行调整(图10-10)。水平度达到要求后,再拧紧地脚螺母。

图10-10250×500颚式破碎机安装

1-道木;2-底垫;3-活动颚板;4-电动机

4.清洗检查

试运转之前,机器要进行清洗检查,偏心轴与轴瓦接触角度要有110°~120°,由于偏心轴运转受力时,略有弹性变形,故在负荷时,其接触面应如图10-11所示,否则应刮研。

安装后,质量要求如下:

(1)中心位置误差不超过±5mm;

(2)标高误差不超过士5mm;

(3)两端轴头中心高要相等,误差不超过0.2mm;

(4)水平度用0.05/1000水平尺,测量不超过一格;

(5)轴瓦侧间隙以0.001D(轴径)计算。

图10-11轴瓦接触面示意图

试运转及操作:试运转之前,将主轴承及运转部件都应加注润滑油,各部连接螺栓都应紧固好,机器周围清理干净。

电动机要进行单机试运转,无问题后才能挂上三角皮带传动颚式破碎机运转。试运转技术操作要求如下:

(1)单机无负荷运转3~4小时;

(2)轴瓦温度稳定,滚动轴承不超过70℃。滑动轴承(五金瓦)不超过60℃。正常温度应为35~45℃;

(3)机座震动量不超过0.2~0.5mm/m;

(4)负荷试运转7~8小时。

负荷试车开始下料时,要慢慢地加入,随时注意各个轴承的温度及运转情况,不能加入超过入料尺寸的大块矿石,如果不慎为大矿石卡住出料口,应立即停车,以免损坏机件。

载荷运转正常后,投入生产之前,应将各部连接螺栓再次拧紧,在生产过程中,每隔一定时间检查一次。

根据需要的矿石粒度,调整出料口宽度(见图3-3)。用手扳子调节螺栓7,使后壁板的斜垫板2上下移动,调整螺栓被往上提,就能使斜垫板上升,出料口减少;反之,加大。调到合适宽度后,在调节螺栓上做出记号,便于以后调整。

为了保证正常生产,操作人员应注意如下事项:

(1)加料要均匀,加料过多,机器超负荷,易出机械事故,但加料过少,则降低生产效率;

(2)经常检查被破碎物料中是否有金属块,以免损坏机器;

(3)偏心轴承要经常检查,并注入足够的润滑油,轴承可用温度计测量,并可用手摸试,当发现轴承烫手时,必须停车检查,修理;

(4)经常检查各部分螺栓,不得有松动;

(5)缓冲位置,拉杆弹簧拉紧时,弹簧两个相邻螺旋圈间的最小距离不应小于2~4mm;

(6)加料口内物料完全破碎后才停车,设备未开动前,不准加料;

(7)颚板衬板、侧壁板损坏时,应及时更换;

(8)机器运转时,禁止进行清理或修理工作,皮带轮和飞轮应设防护罩。

二、球磨机的安装

球磨机的安装和其它机械安装一样,应遵循下述步骤:

(1)先安装球磨机体,后安装皮带轮、齿轮等传动机构;

(2)先安装主轴承,后校正传动部分的轴承;

(3)先校准球磨机筒体中心线、主轴承中心线,后校准传动轴承中心线等。

安装过程如下:

(一)安装前准备

先按照产品说明书对球磨机的各配件检点、清洗与预装配。如发现有遗漏、误差,应作书面记录,存档备查。

(二)基础划线

球磨机在安装前应按产品说明书(或自行设计)的要求浇制基础,待有足够强度后,才进行基础划线和安装。

基础划线的第一步是埋设中心标板:

中心标板在厚5mm、宽100mm、长150mm钢板焊上5mm钢筋(见图10-12),作好标记定位用。

图10-12挂中心线(中心标板)

在埋设时,不要露出基础面太多,最好与基础相平。埋设数量为:球磨机身纵向中心标板2块,横向中心标板4块,传动轴中心标板2块。

第二步是基础划线,根据选定的位置,定出球磨机中心线的方位,再用10m钢皮尺以20kg拉力拉紧,多人多次准确量出两主轴头中点之间的距离。以传动轴基础为基准点,将此距离在中心标板上打上标记。再以此两点为基准按图纸尺寸划出小齿轮轴承座及其它传动设备的中心线。

第三步是安装线架,挂上中心线。用角钢或方木制作中心线架,固定在基础端面上(见图10-12)。中心线架高度要超过筒体高度。用22号钢丝挂上中心线,一端固定,另一端挂上一10kg重物。吊上线锤,以中心标板的中心为准,将中心找正,使钢丝与标板中心眼重合。

(三)底座及轴承的安装

1.轴承合金刮研

用倒链将球瓦吊于主轴上,并事先在主轴上涂以红铅丹,转动球瓦,根据接触情况,将接触面用半圆刮刀刮削,使接触面积每平方厘米有1~2个点接触,接触角90°~120°,两侧间隙应符合图纸要求。

2.底座及轴承划线

底座划线:在底座加工面上,以地脚螺栓为基础,划出纵横中心线(见图10-13),作为安装找正用。

图10-13底座划线

轴承座划线:在轴承孔中间加一方木,在方木的中心钉上菱形薄铁皮,作为求中心点用。用划规求出中心点及十字线,根据瓦座宽度作出侧面中心线(见图10-14)。划线工作结束且混凝土基础强度达75%以上后,即可安装。

图10-14轴承座划图

3.底座的安装

测量标高:底座标高可用水准仪或水管连通器进行测量。一般用水管连通器测量较简单。其方法是:取一条胶管,两头套上玻璃管,加上浅颜色的水。在底座加工面上,放上水平尺,根据底座标高点,将水管一端放在标高点上。以此为基准,另一端靠近底座侧面,根据水平高度,确定底座高或低。根据测量结果确定垫铁厚度。使用水管连通器要注意水管装水时不得有气泡,使用前将两玻璃管合在一起看看是否等高。

底座找正:根据挂设的中心线,吊上铅锤,调整底座纵横中心与线锤顶点重合。每一端底座找中心位置时,要吊二个线锤。这样才能保证底座中心线垂直和平行。

用0.04~0.1/1000水平尺放在底座加工面上测量水平度,测量时要多测几个位置才能准确。

加垫铁:根据测量结果,得到垫铁需用厚度。垫铁厚的用铸铁板,较薄的可用锻打成楔形的钢板。放垫铁时,应铲平垫铁下面的基础。若底座基础低,则加一层砂浆。

4.地脚螺栓孔灌浆

底座安装校正后,可进行地脚螺栓灌浆,一般要求用150号混凝土。待混凝土强度充分增长后,方可拧紧地脚螺栓。

5.轴承座的安装

球面轴瓦在浇注合金前,应进行2~4kgf/cm2的水压试验。如发现班点漏水,可钻孔解决。若有裂纹,可烧生铁电焊。浇注后,应进行一次水压试验。

将轴承座吊装在底座上,以瓦座中心点吊线锤找正,使瓦座中心线与底座中心线重合。

用钢皮尺测量两端轴承中心距,其误差应符合图纸要求。

用水管连通器测量两轴承大瓦座中心高,使两端瓦座在同一水平线上。

扭紧轴承螺栓。

(四)磨体的安装

磨体安装前,应对筒体与球磨机侧板、或侧板与主轴头等联接情况进行一次检查。若发现不符合要求,应进行调整或重装。

1.小型球磨机可架设三角架,直接用起重葫芦吊装。较大的球磨机可在两基础之间搭枕木堆,用卷扬机或绞车将筒体运到两轴瓦上(高于轴瓦50~100mm),然后在磨体每一端各用两台千斤顶顶起。拆除一层枕木,调整筒体,使两端主轴头与轴瓦两端距离相等。然后徐徐落于轴瓦上,安装方法见图10-15。

2.测量磨体中心线,使挂好的吊线铅垂线与磨体两端轴中心点重合。

3.标高测量,用水管连通器测量(见图10-16)。要求两端轴中心线应在同一水平面上,允许误差最大不超过0.5mm。

图10-15球磨机筒体安装

图10-16磨体标高测量

4.在两端轴上面用0.04~0.1/1000水平尺测量水平,其偏差不应超过一格。

5.用原薄规探测大瓦与轴两侧间隙,其间隙应符合图纸要求。

6.把油圈安装于两主轴头上。

7.用手转动筒体看转动是否灵活,但不能有不同心晃动,否则应再反复校正以上的技术设施。

8.安装主轴承盖。安装前,将大瓦和主轴清洗干净,然后涂上机油,盖上瓦盖,把连接螺钉对称均匀拧紧,转动磨体,检查螺钉扭力是否均匀或接触间隙是否过小。

(五)二次灌浆

底座与基础之间要进行灌浆。灌浆前,拧紧地脚螺栓,打紧斜铁,用电焊将垫铁点牢,但底座与垫铁不要焊接。底座下面基础要清扫干净。灌浆时要捣实,不能有间隙或蜂窝等缺陷。

(六)大齿轮的安装与检查

1.用薄铁片制成的齿规检查齿距,不符合的应加以修理,同时要清理铸造沙皮。

2.若大齿轮是剖分式的,则应将两半齿轮组合起来,拧紧对口螺栓,用地规检查节圆、外圆直径偏差。若偏差超过图纸规定,应使用油压机调整。

3.将制造的装配十字头配好,先安装一半,转动筒体,使半部齿轮移到下方再安装另一半。筒体连接螺栓中应有四分之一为隐钉螺栓,即孔与螺栓配合为过渡配合,隐钉螺栓位置在圆周上均匀分布并应对称。

4.检查齿轮安装质量。用三齿样板检查两半齿轮接口处的齿距,误差不得超过±0.005m(模数),大齿轮与筒体法兰接口处间隙不得超过0.05mm。用划针测量法检查大齿轮的轴向偏差和径向偏差(见图10-17),要求径向偏差不得超过士0.001D(D是大齿轮外径),轴向偏差不得超过±0.5~1.0mm。

图10-17大齿轮测量

a-径向偏差;b-轴向偏差

(七)小齿轮与传动轴安装

先将传动轴瓦刮研,要求轴瓦接触角70°~90°,接触面每平方厘米不小于2点,瓦口间隙应符合图纸要求。

传动轴的安装要求符合图纸中两齿轮中心距,轴与磨机中心线应平行。小齿轮装配用热压法,装配后放在轴承座上,然后灌地脚螺栓。待保养一段时间后,再拧紧连接螺栓和校对中心线,装上轴承盖并检查与轴的间隙。

(八)大小齿轮的啮合检查

在小齿轮齿面上涂上红铅油,转动磨机测量接触面积,接触点应在节圆线上,按标准要求最好为齿高的20%~25%,为齿宽的65%~70%。

用压铅法或用尺测量啮合的顶间隙及侧间隙。顶间隙为0.2~0.25m(模数)+热膨胀量(约1mm);侧间隙,铣齿为0.06~0.10m(模数),铸齿为0.16m(模数)。

(九)大三角皮带轮的静平衡测定与调整

大三角皮带轮在装配前必须进行静平衡测定,若静不平衡,运转时会产生振动,或导致齿轮转动时出现周期性的噪音。

静平衡试验可利用传动基座进行。将两轴承安装好后,放上大皮带轮,找正、找平,将轮按圆周分四点,盘转观察。若不平衡,其重的一侧总是向下,可在对称位置加以重物,使之平衡为止。

(十)衬板的安装

非金属矿产加工使用的多是间歇式球磨机。粉磨矿物原料时,为保证质量,又要保护易受磨损的球磨钢质筒体,所有球磨均需使用衬板。过去衬板多用燧石砌筑,近年来,有些厂进行了用橡胶衬板代替燧石板的湿磨原料试验。在工艺上取得的数据证明,采用橡胶衬板的球磨与采用燧石衬板的球磨相比有如下优点:在产量方面,同容积磨机可增产30%~40%;在单产电耗方面可节约电力15%~20%;噪音减少;磨机运转中振动大大减轻,能延长磨机传动装置寿命。此外,橡胶衬板的突出优点是其使用寿命约为燧石衬板的5~6.5倍(即橡胶衬板可使用10年)。大大减少了衬板安装工时与维修费。但橡胶衬板的一次投资费用较大,其费用是燧石衬板一次投资的6.82倍。

有关衬板的安装方法这里不再详细介绍。

(十一)球磨机的试运转

球磨机安装后,应按顺序进行空载试运转、半负荷试运转和全负荷运转,以检查安装质量是否符合要求。

1.空载试运转

在不装研磨体、物料的情况下起动磨机,运转4小时以上,检查下列各项:

润滑系统工作情况,如油环带油是否有效。检查轴承温度,不应超过60℃。

球磨机窜动量是否超过容许限度。

大小齿轮及减速机运行是否正常,噪声是否强烈,大小齿轮啮合印痕是否符合要求,大齿轮经向及轴向偏摆是否在容许范围之内。

大三角皮带轮运转是否正常,从振动的情况判断,大三角皮带轮重量是否平衡,从皮带轮带槽附近的发热情况判断皮带的松紧是否适当。

电动机的温升及整个电器系统工作是否正常。

2.半负荷试运转

装入半数研磨体和物料,运转4~8小时,同样检查上述项目进行调整。

3.全负荷试运转

加入研磨体及物料,运转中密切注意电动机电流是否超过额定值,电动机转速有无明显降低。检查皮带打滑和轴承发热情况,检查球磨机振动情况。如上述情况正常,则试运转结束。停磨后重新拧紧地脚螺母。即可正式投入生产。

三、皮带输送机的安装

(一)安装顺序

安装前应将基础清扫干净,进行基础划线。以头、尾两鼓轮的中心,挂设一条纵向钢丝线,划出基础中心线,由此线再划出左右两条边线(支架地脚螺栓中心线)。再根据施工图尺寸划出横向间距线。

按基础已划出的线迹,校对预留地脚螺栓孔的位置,如有不符则应重新凿孔。

1.机架安装

按照地脚螺栓孔的位置,先将机架排列好,用螺栓连接起来,并将地脚螺栓插入孔内。根据基础的中心线进行找正、找平后,可将地脚螺栓灌浆,待地脚螺栓达到强度后,需再找正一次,拧紧地脚螺栓,然后再进行托辊安装。

2.机头、机尾鼓轮安装

依据机架中心线找正位置,两鼓轮横向中心线应平行,误差不超过1mm,水平度每米不大于0.5mm。

3.传动装置安装

根据驱动鼓轮先安装减速机,再安装电动机,轴向中心线均应吊线锤检查,误差不大于1mm。

4.皮带安装

安装前将拉紧装置调到终点,用钢盘尺实测长度尺寸,按皮带厚度进行皮带长度计算,应力求准确,切口要垂直整齐,连接时工作面朝上,用倒链拉伸,胶合牢固后可以放开。

(二)皮带输送机安装应达到的基本要求

(1)皮带与滚子接触要好,不得有滑动摩擦现象存在,以提高皮带使用寿命;

(2)保证皮带运行平稳,不得有明显的蛇行及脉动现象存在;

(3)在运转过程中保证皮带不脱落;

(4)皮带接头要正确,要在一条直线上,同时工作面不能装反。

四、转筒干燥器的安装

转筒干燥器的安装按下述步骤进行:

(1)安装托轮装置、挡托轮装置于基础上;

(2)将机体吊起,轻轻放于托轮、挡托轮装置上;

(3)安装传动装置;

(4)调整合格后灌浆;

(5)试运转。

安装过程如下:

(一)安装前准备

先按照产品说明书对转筒干燥器零件进行清点、清洗与预装配,修整零部件加工表面。

(二)基础划线

转筒干燥器在安装前应按产品说明书的要求浇制基础,基础支承面倾斜度应与机体一致,待有足够强度后,才进行基础划线和安装。

(三)托轮座与挡托轮座的安装

托轮与挡托轮座装到基础上时基础板上的刻线应完全与基础水平基点板刻线重合(如图10-18所示)。

图10-18支承座在基础上的安装图

1-基础;2-压紧螺钉;3-地脚螺栓;4-台架;5-装在轴承上的滚轮;6-铅垂线;7-基础中心刻线

图10-19支承托轮安装检查图

1-内径规;2-支承滚轮

同时,机座应由压紧螺钉抵在基础限动板上。地脚螺栓穿入板上的孔,装上垫圈、螺母拧紧螺栓,校准机座的斜度和高度。较准时铅垂线两端应与基础纵向轴线定向水平基点板的刻线重合。用内径规检查机座两托轮间的间隙Q(图10-19所示)。此间隙应等于

非金属矿产加工机械设备

式中Db——支承箍直径;

Dc——支承滚轮直径。

支承滚轮中心间的距离A应等于:A=2a+Dc,要从每个机座的两侧检查这一尺寸的大小。而后移动基础上的挡托轮座使纵向铅垂线两端与按基础纵向轴线定位置的台板刻度重合(与托轮中心线平行)(图10-20所示)。将直尺放在托轮端部,测其不应超过5mm的位移量(图10-21所示)。

图10-20托轮座在基础上的安装图

图10-21支承托轮平行和同心度的检查

1-支承滚轮;2-基础板;3-基础;4-定向板;5-直尺

拉紧挡托轮座滚轮上方的横向线,使铅垂线与基础上的已装座横轴线配置定向水准基点板刻线重合。移动挡托轮座使铅垂线与座板中心线垂直支承滚轮中心线的定向刻线重合。自横向线放下两根铅垂线到托轮上母线(图10-22)。同时铅垂线两头至母线中间的距离应一样,并等于:

非金属矿产加工机械设备

式中h——基底到托轮中心线的支承轴承高度;

α——托轮座对水平线的倾斜角。

在支承托轮宽度中间表面上装一窄面直尺,尺上放一水平仪,以压紧螺钉调节直尺达到水平位置。

图10-22托轮座与横向铅垂线相对位置检查图

图10-23托轮座倾斜的检查

1-水平仪;2-楔子;3-支承滚轮;α-相当于设备设计倾斜角的角度

校准支承座的安装位置,使挡托轮座和托轮座托轮中间平面之间的距离等于设备壳体箍中部之间的距离。

挡托轮座和托轮座由调节螺钉实现倾斜(图10-23)。

校准结束后,对基础螺栓灌浆,待混凝土凝固后把螺母上紧,再次校准,对两个机座最后二次灌浆。

(四)筒体的安装

筒体在托轮座上的安装,要保证托轮轴线与筒体中心线斜度相同,可用硬木依照筒体斜度制成楔形标板,放在托轮上,再用水平仪置于楔形标板之上进行测量。托轮安装后,放上筒体,还要用压铅法测量托轮与滚圈接触情况作进一步的调整。经调整后,筒体两端径向圆跳动小于4mm。

干燥器运转时,滚圈端面应不常与上下挡轮接触,或只允许稍有接触。若筒体上窜,与上挡轮接触,则在托轮上加机油,此时筒体应下窜,离开上挡轮,反之若筒体下窜,与下挡轮接触,则往托轮上撒少许细砂,不久筒体亦能停止下窜,滚圈离开下挡轮。

若筒体窜动严重时,则需在水平位置上,转动托轮的轴线(调整顶丝)校正。方法是:在托轮表面用粉笔划一箭头,使箭头指向托轮转动方向,将托轮轴线顺时针方向或逆时针方向转动后,若此箭头向下方倾斜,则可使筒体向下移动,反之则向上移动。

(五)传动装置的安装

往基础上装放包括下部冕状齿轮、主辅减速器和电动机在内的电动减速器组(如图10-24),用厚度等于齿轮齿端和齿间间隙大小的两块薄片(0.25模数+0.5mm热膨胀补偿数)对下部冕状齿轮和冕状齿轮找中心。薄片放在齿轮两边要啮合的齿间底部并将下部冕齿轮和支承框推到这些薄片的尽头,用压紧螺钉调节位置。

冕状齿轮和下部冕状齿轮的允许啮合偏差如下:

齿圈,径向和轴向振摆要小于3mm;

相对冕状齿轮中心线的中心线偏移5mm;

传动装置倾斜度应与机体一致,偏差小于每米0.1mm,电动机、减速机轴中心线同轴度小于0.5mm。

在把传齿轮和冕状齿轮安装找正结束后,对主减速器和下部冕状齿轮、副减速器和主减速器、电动机和主副减速器,在各半联轴节处最后检查定中心情况。

传动装置(电动减速器组)试车3小时,其中对电动机每一个转速试车30分钟以上,由辅助电动机驱动试车1小时以上。

图10-24传动装置安装图

1-减速器;2-壳体;3-减速器;4-电动机;5-支承框;6-地脚螺栓;7-压紧螺钉;8-基础;9-冕状齿轮;10-下部冕状齿轮

对装卸料罩、燃烧室及密封圈等,按照装配图及一般规程装配。

(六)设备的试运转

各部分安装调整合格之后灌浆,待水泥干固后进行空载试验。

检查地脚螺栓及各部连接处确属牢固,齿轮及其它活动部位无卡阻之后,开机连续运转8小时,检查筒体有否激烈往复窜动,齿轮传动有无激烈震动,轴承工作情况如何,轴承温度最高不得超过65℃(环境温度30℃),电动机电流无显着波动。空载试验合格后,进行负荷试验。试验程序:运转中通入热介质,待达到工作温度后,加入物料至正常负荷,连续运转8小时检查设备运转是否正常,如运转正常,可投入试生产。

⑵ 设备安装水平度调整的调整方法有哪些

通常调整设备的水平度可以通过以下两种方法:
1、水位校正法(常规):采用水平尺、两端开口的水管等工具利用水位持平校准。银野
2、直角垂线校正法(非常规):用软线吊重物,使线垂直下垂,并将直角尺的一条直角边保持与垂线平行,另一直角边与校庆搏祥正目标的水平面保持平行誉搏,可校正目标是否水平。

⑶ 数控车床常见故障

常见的数控机床的排除故障的经验总结如下,以供读者参考。

一、 操作数控机床的直线轴的正负方向时,直线轴都向一个方向移动
在数控机床的维修中,无论数控机床采用什么品牌的数控系统,很多维修人员都遇到过如下一种故障,即数控机床的直线轴,无论开正、负方向,直线轴都向沿着撞坏机械的方向运动。以数控车床的X轴为例,具体说明一下。数控车床的X轴运动至+X方向的限位附近时,无论你按+X还是-X方向,X轴都向着+X方向运动。
出现这种故障时,一般显示单元没有报警,原因是由于机床X轴惯性等原因,X轴的位置处于+X轴的软限位与硬限位之间。
解决此类故障的方法是:将X轴的正、副软限位修改为大于硬限位的数值(如X轴的正负硬限位坐标为100,-800,可将软限位暂时设定为1000,-1000),用手动将X轴开向偏离X轴故障方向的方向(如上述举例所示的-X方向),感觉X轴的坐标处于+X和-X之间时,重新设置X轴的软限位,并回参考点后,故障即消除。
二、光栅尺作为数控机床的直线轴的位置检测元件时常见的几种故障
1、直线轴在回参考点中,找不到零脉冲。在表现形式上就是该轴在回参考点时一直运行直到撞到该轴的限位。
这种故障发生的原因一般是读数头或光栅尺肮了。
解决此类故障的方法是:把读数头卸下来用无水乙醇冲洗干净,用丝绸布沾上无水乙醇把带有刻度部分清洁干净即可。
2、数控机床的直线轴在运行中出现报警。
数控机床在运行中,如果采用西门子840D或德国力士乐数控系统的某个直线轴,出现报警“硬件编码器错误”;如果采用西班牙FAGOR数控系统的某个直线轴,出现报警“跟随误差超界”。这时候一般是作为机床直线轴的位置检测元件的光栅尺出故障了。
这种情况下,由于震动或其它原因,一般是机床在使用中使读数头与光栅刻度尺的距离远了,数控系统误认为光栅尺坏了。处理该故障的方法是按光栅尺说明书的要求调整读数头与光栅尺的距离。读数头与光栅尺尺身之间的间距为1~1.5mm左右,最好别超过2mm.。
出现上述故障的另外一种原因是光栅尺的安装位置不合适,如安装在油池附近,油气等将光栅尺污染,这时候就要把光栅尺的“定尺”和“动尺”分别进行清洁,然后再安装之后进行光栅尺的调试才可使用。
还有一种故障情况也会出现上述报警,那就是由于读数头的位置安装不合适,造成读数头损坏,更有甚者,光栅尺定尺内出现铝合金碎屑,光栅刻线出现损坏,造成光栅尺定尺的彻底报废。
3、数控机床的直线轴出现暴走
当数控机床的直线轴安装有光栅尺时,如果该直线轴出现暴走,一般情况下是该直线轴的位置检测元件————光栅尺被污染,需要对光栅尺的光栅或读数头进行保洁才可消除故障。
在多年的数控机床维修中,我们发现光栅尺作为数控系统的位置检测元件,在机床的机械部分良好的情况下,可以提高机床直线轴的定位精度。除此之外,光栅尺还可以检测机床机械部分存在的隐患或问题,下面就几个维修案例进一步说明。
4、HG3018美国CAPCO磨床机床颤抖
从美国CAPCO公司进口的HG3018轧辊数控磨床,采用德国BOSCH CC220数控系统, X轴为全闭环控制方式,位移检测元件采用德国海德汉玻璃光栅尺。当机床操作者无意中拿木条轻轻击打机床砂轮架外壳体时,人站在工作台上,感觉机床产生剧烈的颤动。
从这个现象看,该故障的产生,肯定带有机床本身的一些动作,绝对不是纯粹的机床某个零部件松了,人拿木头条轻轻“砸”机床外壳导致的结果。经查证,是X轴的滚珠丝杠背冒松造成的:当人拿木条轻轻砸机床砂轮架外壳时,因为X轴的驱动依靠滚珠丝杠来实现,很轻便,由于X轴滚珠丝杠背冒松动,故砂轮架会有一个微小的移动。这时候,数控系统检测到在没有发出X轴移动信号的情况下,X轴移动了,肯定是“非法的”,这时候数控系统会发出与砂轮架移动方向反向的“给定”信号,使砂轮架反向移动。由于滚珠丝杠背冒的松动,X轴反向移动时会走过头,此时砂轮架在数控系统的指挥下,又向与之前移动方向反向移动。。。。。如此往复,造成砂轮架的震动。
在长期对数控机床的维修中,我们发现,光栅尺不仅仅作为位置环的检测元件,还能成为机床直线轴的“监督”元件。当机械存在故障隐患时,如果该轴采用光栅尺控制,该故障隐患会通过光栅尺将隐患“放大”,以故障的形式表现出来。没有采用光栅尺的机床,出现机械故障隐患时,往往不容易表现出来,直至故障隐患扩大化,变成硬性故障。
5、C61200数控车床加工轧辊辊身时出现X轴前后窜动
我公司从武重购买的C61200车床经过数控化改造后,采用西班牙FAGOR 8055TC数控系统。该机床有一天在加工轧辊时,由于轧辊的辊身比较偏,正常情况下,轧辊辊身应该是圆柱形,但由于浇注原因,该轧辊辊身各部直径尺寸不一,呈现椭圆形。致使当机床的刀具吃上辊身尺寸较大的地方时,在无X轴移动指令的情况下,X轴自行往远离轧辊的方向移动。当刀具接触上轧辊辊身尺寸比较“瘦”的地方时,X轴自行向靠近轧辊的方向移动,造成X轴的前后窜动.
其原因如下:我们首先对该机床的数控系统进行检查,发现X轴在加上“使能”信号的情况下,其交流伺服电机加上了自锁力。当把X轴的位置检测元件屏蔽掉后,改成半闭环,再进行吃刀加工,发现之前的X轴前后窜动的现象消失了。 看到这种现象后,有人判断认为是光栅尺出了问题,而我认为恰恰是X轴光栅尺完好无损,才可以发现机械存在的隐患。通过检查X轴滚珠丝杠,发现是滚珠丝杠的背帽松了。正因为X轴滚珠丝杠的背帽松了,在轧辊旋转中,由于辊身是椭圆形,在刀具接触上轧辊辊身尺寸比较大的地方时,由于轧辊辊身对X轴有一个“向远离轧辊直径方向的顶力”,X轴被“顶”向远离轧辊直径的方向,此时X轴的移动不是机床数控指令所致。但用于检测X轴的位置的光栅尺发现在没有数控系统发出指令的情况下,X轴向“+X”方向(远离轧辊辊身直径的方向)移动,光栅尺的作用是,通过检测直线轴在数控指令的作用下,该直线轴移动是否准确,如果该直线轴移动不准确,通过数控系统的干预,使该直线轴定位至准确位置。因此当刀具接触上轧辊辊身尺寸比较“瘦”的地方时,刀具与轧辊辊身有了一定间隙,通过光栅尺的作用,使X轴向靠近轧辊直径的方向移动,定位至由数控系统发出的X轴坐标位置。这样轧辊每转一周,在X轴没有数控指令移动的情况下,X轴就出现“远离轧辊直径方向”和“靠近轧辊直径方向”的交替移动。故加工偏辊时,X轴由于滚珠丝杠背帽的松动使其产生来回窜动。
6、 齐重RT125数控车床移动Z轴时出现震动
我们从齐重购买的RT125数控车床,有一天在移动Z轴时出现震动,我们原认为是光栅尺出了问题,后来经检查发现该车床的导轨上表面被铁屑划出痕迹所致。
验证自己判断故障产生的原因是否正确的方法是,将该轴的控制方式改为半闭环即将光栅尺屏蔽掉,这种震动即可消失或减轻了很多。此时有人会说那就干脆屏蔽掉光栅尺后使机床工作吧。这只是临时措施,该轴屏蔽掉光栅尺后的加工精度肯定比以前要降低很多。
在十几年的数控机床维修中,我们遇到了无数的和光栅尺有关联的故障,基本上都是机械本身出现了问题。这说明光栅尺还可以把数控机床潜在的机械存在的问题检测出来,并以故障的形式表现出来。
7、 数控机床直线轴采用全闭环时出现故障而采用半闭环时“貌似”故障消除的现象
数控机床的某个直线轴采用全闭环时出现电机抖动、轴震荡等现象,而将位置检测元件屏蔽掉,这种不正常的现象消失,一般情况下,处理该类故障的方法如下:
首先检查位置检测元件,如光栅尺及读数头是否清洁,读数头的安装位置是否合理,排除掉位置检测元件不正常的因素。
如果能保证位置检测元件良好的情况下,一般情况下就是该直线轴的机械传动链出现了问题,此时应检查直线轴的机械传动链是否有部件松动现象、机械部件是否有磨损、机械传动链的相关润滑是否良好。
三、 与伺服电机编码器相关的故障
编码器作为伺服电机的速度反馈元件,无论该直线轴是否有位置检测元件,只要伺服电机的编码器或其线路有虚接的地方,都会使该直线轴暴走。有时候检查编码器线虚接也不是很容易的事:插头的针是否有短的,插头各针脚是否有歪斜的,插头焊接的信号线及电源线是否有接触不良的,在校线中一定要用数字万用表。下面以一个具体例子说明一下校线的不易及注意事项。
TS6916落地式双面镗铣床是齐二机床厂产品。2004年10月之前为带FAGOR数显装置的机床,但各个直线轴的机械按数控机床所需配置,各个直线轴的电机采用西班牙FAGOR公司FXM系列交流伺服电机,直线轴的控制装置采用FAGOR公司AXD系列驱动装置。主轴电机采用南洋交流变频电机,主轴控制系统采用西门子6SE70变频器。2004年10月改造为数控机床,增加西班牙FAGOR 8055M数控系统;直线轴和主轴仍采用之前的产品。
2004年5月至2004年10月 这段时间出现过大约十几次同样的滑枕相向暴走故障。当时对FAGOR数控系统不是十分熟悉,都认为是因为电磁干扰引起的故障。当时的说法是,主轴电机的电源线采用普通电缆,没有采用屏蔽线,影响了Z轴的运行,偶尔干扰,产生Z轴暴走。这只是猜想,所以当时为了屏蔽干扰信号,在电柜的四周拉上铜线网。这样处理之后,果真故障次数少了(后来证实这是巧合),但仍不时间隔一个月出现一次同样现象的故障。
当时大家都认为主轴电机的电源线采用屏蔽电缆就可以消除该故障。2004年10月进行数控化改造时将主轴电机电源线换成了屏蔽电缆线。各个伺服轴的电源线和编码器电缆采用国外原装、高柔电缆。改造完成半年后,没有出现过一次故障。所以大家更加相信,数控改造之前出现滑枕暴走现象是因为主轴电机没有采用屏蔽线造成信号干扰所致。2005年5月连续5次出现以前同样的故障现象,打破了人们以前对造成该故障原因的认识。人们对以前形成的观念开始发生动摇。
当时把发生暴走的滑枕电机的控制装置送到我们的电气实验室进行试验,发现经常性的出现暴走,通过对线路的查找,在没有发现线路有问题的前提下,我们将驱动装置送到北京FAGOR公司修理。经过检查和测试,没有发现驱动装置有问题。
将该驱动器拿回我们的电气实验室进行试验仍然不时出现暴走现象。重新对线路检查,仍然没有发现线路有问题。注意:后来证实,编码器电缆的第12角虚接。我们在检查线路时比较容易犯错误的地方在线路的两头,这次我发现通向驱动器侧的接线插头内的线松动了。当时校线时手拿着插头,忽视了插头本身出现了焊点开了,但有其它线在插头内掖着,第12角线不至于彻底离开12角。
将原驱动器重新装到机床上,对该编码器的电缆进行检查和测试,没有发现线路有问题。机床送电后开始正常工作。当天晚上后夜出现了滑枕暴走的故障。由于对夜班维修人员有交代,所以赶紧对Z轴编码器线用万用表进行测量,当时用的指针表,测量编码器的各个角的线路都通。早晨上班后,看了看测量后送电试机床,发现仍然暴走。赶紧用数字万用表对Z轴编码器的各个角的线路的阻值进行测量,发现除了12角为0.6欧姆外,其它角为0.3欧姆,看来问题就出现在0.6欧姆上。对传统意义的电气系统测量,一般用指针表测通断,对数控系统内的测量要用数字表,0.6欧姆的意思是:数控系统认为该角断路。至此造成该故障的原因基本明了。
那为什么以前偶尔出现故障,出现故障后再重新送电机床又恢复正常了呢?
我们知道一段导线的阻值计算公式为R=ρ*L / S
公式中 R为一段导线的阻值
ρ为电阻率,其数值与导线的材料有关,材料不变,ρ值不变。.
L 为导线的长度
S为导线的截面积
我分析在机床运转中, Z轴编码器的电缆线敷设在两段坦克链内,经过的线路比较长,当某时间,偶尔出现坦克链对电缆线拉伸时,该电缆线在长度上没多大变化,在直径上变细,其电阻值就变大,从而出现滑枕暴走现象。在滑枕暴走的时候,机床发生剧烈颤抖,又使电缆线复原,从而在重新送电后机床又恢复正常。
更换Z轴编码器电缆线,排除故障。
四、 数控车床床头箱异响
新购青海重型机床厂的CK84140轧辊车床,主轴箱有两个档位,机床操作人员反应,在使用高速档时,主轴箱内有齿轮击打的声音。当时机械修理技师要拆主轴箱大盖,我让他暂停。我认为,如果真像机床操作人员说的那样,只有在主轴一个档位时,旋转主轴,主轴箱内发出击打齿轮的异响,那肯定是机械的原因造成的。我需要核对机床操作人员反馈来的信息是否正确。结果发现,在主轴两个档位的低速段,旋转主轴,主轴箱内都发出齿轮击打的声音。操作者没有正确反应信息,原因是主轴处于慢档的低速段时,转速范围很短,一不留神,用电位器调速就调过去了。
既然主轴在两个档位的低速段,旋转主轴,主轴箱内出现异响,首先要核对主轴电机在这个速度段,旋转是否平稳。该主轴控制系统采用西门子6SE70变频器,在变频器的显示器上,用只读参数r19诊断主轴电机的转速发现,主轴转速在这个速度段运行不平稳。经过对主轴调速系统的调试和带载优化,主轴速度平稳了,就不会出现由于主轴电机运行不平稳从而出现齿轮在转动中,啮合齿轮之间不能匀速转动,出现的齿轮击打声。
五、 数控磨床磨削锥面产品异常
数控磨床在磨削锥面产品或修正锥面砂轮时,需要X、Z轴联动时,有时会出现:Z轴一个方向运动时,吃刀大;Z轴往另一个方向运动时,吃刀很小或吃刀断断续续。这种现象在磨削锥面产品时,Z轴在往复运动中,吃刀大的一个方向,磨削的火花大,吃刀小的一个方向,磨削的火花很小。若在修复锥面砂轮时,出现上述现象,可从金刚石笔与砂轮接触的“沙沙”声的大小判断。
遇到这种情况,说明数控磨床的磨削程序虽然按照砂轮或产品的指定的锥面编制,但X、Z轴的联动速度没有在同一时间内达到十分“合拍”。为什么按照指定的磨削路径编制数控加工程序,而未能达到理想境界呢?这种没有机床报警的故障很难处理,处理方法如下:
1、 检查数控磨床的尾座上砂轮修整用的金刚石笔座在尾座上把合的是否牢靠及金刚石笔是否松动。
2、 无论数控磨床采用的数控系统是西门子系列还是发格、博世力士乐及发那科系列等,一般情况下,调整X、Z轴的轴参数中的“比例系数”参数至同一数值。此时上述磨削中,Z轴在往复磨削中,由于X、Z轴的响应特性一样,两轴联动效果会很好。
六、 数控磨床磨削产品出现振纹及螺旋纹等的原因
数控磨床在磨削产品时,若磨削的产品表面出现振纹或螺旋纹,其原因是可能是多种多样的,可依据如下情况查找:
1、 金刚石笔是否松动
如果修正砂轮的金刚石笔出现松动,修整的砂轮表面自然会凹凸不平,磨削的产品出现表面质量是在所难免的。
2、 砂轮主轴和工件主轴转速是否平稳
检查砂轮主轴和工件主轴的转速是否平稳:在诊断主轴转速的时候,,让所查看的主轴给定至一个速度,可以从主轴控制器的诊断参数中查看其是否在变化,变化的多少是多少。也可以用转速仪测速。如果主轴转速不稳,磨削的工件表面就会出现楞状。
3、 砂轮主轴及工件主轴电机的散热风机是否有震动
主电机的散热风机有震动直接影响磨削产品的表面质量。
4、 磨头的检查
测磨头的径跳和轴向窜动,若超标,就要采取技术措施。若磨头的径跳超出标准值,在无法更换磨头的情况下,可以将磨头主轴油的粘度提高,来缓解磨头的劣势对磨削产品的影响。
5、 床头箱拨爪及自位板
在磨削的工件旋转中,如果床头箱的拨爪与磨削的工件有相对位移;如果床头箱的自位板在工件旋转中间歇地滑动,磨削的工件的表面质量会受到很大的影响。
七、 数控机床手脉常见故障
手持单元是数控机床必不可少的手动操作部件,其可以很方便机床操作人员对刀。在多年的数控机床维修中,经常遇到的手持单元故障及方便操作人员使用机床时需要注意的事项如下:
1、 数控机床直线轴的自行移动
如果采用西门子数控系统的数控机床在手动界面下,在机床操作人员不施加指令的情况下,出现直线轴的缓慢移动;如果采用FAGOR数控系统的数控机床在手动界面下,在机床操作人员不施加指令的情况下,出现直线轴的快速移动。此时手持单元处于X轴激活状态,X轴就出现非法移动,如果手持单元的Z轴处于激活状态,Z轴就出现非法的移动。此时故障的根源是手持单元的0伏线松动或虚接所致。
2、用手持单元操作时,出现轴的选择轴混乱
如果用手持单元选择手动操作机床时,如果选择X轴,在X轴运行中偶尔出现X轴不运行而其它轴(比如Z轴)运行,一般情况下,手持单元及手持单元至操作站的手脉插头间的导线不会出现问题,真正的故障源在操作站与电柜之间的手持单元的相关线路出现了导线外皮裸露。
3、避免产品事故或设备事故的几个改进
在日常的工作中,偶尔遇到数控机床操作人员在对刀或用手持单元移动中,发生刀具扎刀或刀具碰产品的质量事故,究其原因,一般是采用的速度太快或误操作所致,为此针对这些情况,可以采取如下的防错纠错措施。
快速移动时,采用数控面板上的操作。对刀时或近距离的移动时可以采用手持单元,此时可以将手持单元上的“X100”倍率封锁住,方法是:将手持单元上的“X100”线拆掉或者修改PLC程序,使“X100”倍率不起作用。
八、 数控机床不能正常上电开机
无论采用何种数控系统,数控机床在重新开机时,出现显示单元不能运行到正常的操作界面即出现报警提示,这种情况下,一般是操作系统出现文件缺失或损坏,要想恢复机床的正常运行,就只有重新安装数控的操作系统了。针对这种情况,作为机床维护人员,要在机床处于良好状态时就做硬盘备份,若数控系统为经济型或无硬盘时,前提联系厂家,掌握故障一旦出现时的处理方法。
九、 数控机床直线轴电机或驱动型号改变时的调整方法
对于数控机床的直线轴的伺服电机或其控制装置出现故障,需要更换电机或控制装置时,若无现成的同型号的备件,一般要采取如下的步骤才能使机床恢复正常。
1、 在更换损坏的电机或驱动装置之前,在原机床的显示单元上抄录该机床的传动比及螺距参数。
2、 运用相应的驱动软件重新按照现有的条件进行参数配置,并按照传动比及螺距参数进行设置。
3、 由于电机及驱动装置的导线不变,在参数化配置好之后,按照原有的电机及驱动装置的导线的线径,在软件中进行电流限制,以防止新更换的电机或驱动装置启动或运行电流大导致导线烧毁。
十、 数控机床的直线轴的定位精度不准
一些机床在运行一段时间后,可能出现直线轴的定位精度和重复定位精度准的情况,这种情况,一般是机床使用几年后,机械磨损所致。遇到这种情况,可以按照如下步骤进行调节机床。
1、 以前直线轴上的传动比是刚出厂时的数值,使用几年后,由于机械等部件出现磨损,要根据实际情况修改传动比以矫正该直线轴的定位精度。可以使用一些测量直线轴定位精度的标准杆等测量工具,通过比对数控系统的指令值和实际所移动的长度数值,可以在以前的数控参数中微调传动比参数,尤其是在经常使用段附近进行校核,以便直线轴的实际移动数值彻底接近指令数值。
2、 在矫正定位精度准确的基础上,若直线轴的重复定位精度仍比较差,可以在直线轴的常用段测试反向间隙,通过数控系统的轴参数将反向间隙通过相应的参数补偿进去,使得常用段的重复定位精度满足机床使用要求。
十一、 数控系统等一些散热方面的故障
数控机床的使用现场如果粉尘大,维修人员点巡检差或其他原因,经常出现如下一些涉及散热方面的故障。
1、若数控系统报类似数控系统或驱动单元过热,一般故障原因是报警所指的数控系统的NC 、驱动装置的散热风扇不转造成系统内部散热不良所致,此时修理或更换风扇使得数控系统的散热良好,即解除机床报警。
2、若数控系统报警某系统接地,通过拆检并观察,若外观良好,此时应重点检查该系统的内部元件有无松动、螺丝或垫片散落在系统中,一般情况下,通过仔细检查一般能修理好。
3、若显示部分报警过热等,一般情况下,是显示单元封闭太严所致。
4、数控机床的主轴电机出现过热现象,一般由如下情况造成:
直流电机的磁场绕组送电,而电机不旋转,使得磁场绕组的能量无法转化成机械能,只能转化成热能散发到电机中。
数控机床的主轴电机虽然没有旋转,但机床操作人员没有按“主轴停止“按钮,而是将主轴倍率开关旋至0,此时主轴电机的电流比正常旋转时还大,接近额定电流。由于主轴电机不旋转,主电机的电磁能无法转化为机械能,只能转化成热能,散在电机中,使得电机的温升急剧提高,时间长点,可能会造成电机损坏。
十二、驱动单元或变频器优化不良及数控保护参数设置不当引起的故障
在数控机床的维修中经常遇到变频器、直流调速系统、驱动单元优化不良或根本无优化造成的“貌似”机械故障实质是电气故障的现象。在优化时要遵循其调试手册的要求和步骤,必要时要带载优化。如控制数控机床的主轴旋转的变频器没有经过优化、启动及制动时间设置时间过短,都有可能造成主轴旋转不平稳。驱动单元的“比例增益系数”设置过大,“积分时间”设置过小,“加速度”参数设置过大都有可能造成直线轴运行中启动、停止时的震动。
数控机床的直线轴有时出现机械部件的损坏,排除完机床操作者误操作及碰撞之外,要检查直线轴的数控保护参数是否设置合理。以FAGOR 8055数控系统为例进行说明。用驱动调试软件进行配置后,要检查驱动参数CP20(电流的极限值)的设置数值,该数值一般不大于驱动单元所控制的伺服电机的额定电流值。另外再设置一个保护参数,即“轴参数”的P21(动态运动时的跟随误差)。该参数的设定值一般略大于通过正常运行该直线轴时,观察到的跟随误差的数值。对于其它类型的数控系统,可参照执行。
上述参数设置不合理,有时在加工工件时,尤其是两轴联动时,会出现加工的产品出现问题或报废,究其原因是在机床加工中,机械传动链出现了松动,而数控保护参数设置不合理,机床不出现报警所致。
十三、轮廓监控或跟随误差超界故障
数控机床在运行中,如果西门子系列数控系统或欧洲生产的一些数控系统出现“轮廓监控”报警,西班牙发格数控系统出现“跟随误差超界“报警。一般情况下不要将相应的轮廓监视参数的数值随意设置过大,如此的话会掩盖机床机械存在的隐患或故障,容易使萌芽中的故障扩大化,而应检查该直线轴的机械传动链是否有松动、装配不合理、润滑不良等问题,只有把这些问题处理好后,再运行该直线轴时,一般情况下就不会出现报警。
还有一种情况也会出现这种报警,即机床的参数设置合理,机械传动链良好,在加工工件时,吃刀量超过了工艺要求的数值、工艺路线不合理、工艺制定有问题或机床的刚性差不足以维持目前的轴的运行速度下的吃刀量。解决的办法是,降低轴的运行速度,减少吃刀量。
十四、数控机床貌似设备故障的一些案例
在数控机床的使用中,经常遇到如下一些机床报警或机床操作者的报修,遇到如下情况,要考虑周全,
1、 若出现“XXX字符”不可能的报警字样,说明加工程序的一些字符不符合规范,属于“非法“指令,修改成合乎该数控系统的合法指令即消除机床报警。
2、 在数控机床的长期维护中,若出现产品受损或报废等,此时判定机床是否存在故障,之前的故障、操作信息一定要准确。此时可能会出现某些人为了自身利益,发生不讲实话的现象。若出现1毫米以下的尺寸误差可能是机床精度所致,若出现几毫米以上的误差一般是误操作所致。
3、 数控磨床磨削的产品的圆度差,要检查头、尾架主轴的顶尖,检查顶尖的后锥及端面、主轴内锥孔是否清洁。若更换顶尖时,不对顶尖的后锥及端面、主轴内锥孔用干净的布进行擦拭,往往会造成磨削的产品的圆度超差。
4、 镗铣床在更换刀盘时,同样也要对主轴的内锥孔用干净布进行擦拭。不擦拭可能造成刀具夹不紧,并且容易造成主轴内锥孔的研伤。
5、 有些数控系统,比如日本FANUC 0TD数控系统,当机床操作人员执行加工程序之前,少摁某个键时,加工程序的第二句会跳过不执行,造成产品质量事故。

⑷ 设备安装如何找正

我来回答吧:

  1. 在机械设备的安装中,设备的坐标位置 调整(找正)、水平度的调整(找平)、高度的调整(找标高)以及紧固地脚螺栓是一个综合调整的过程;

  2. 当对其中一个项目进行调整时,对其他项目可能产生影响,全部项目调整合格,需要多次反复才能完成;

  3. 设备找正:是用移动设备的办法,将其调整到 设计规定的平面坐标位置上,

  4. 即将其纵向中心线和横向中心线与基准线的偏差控制在设计或规范要求的范围内;

  5. 绝对手打,码字真辛苦,如有满意,请及时采纳谢谢

阅读全文

与设备安装时找虚角方法相关的资料

热点内容
打娃娃什么方法好 浏览:320
简单木头秋千制作方法 浏览:860
研究方法计算实验方法 浏览:670
修复肌肤的方法图片 浏览:332
口腔异味重怎么治疗方法 浏览:93
挽回女朋友的步骤和方法 浏览:517
oppo下载路径设置在哪里设置方法 浏览:962
画竹的方法有哪些 浏览:211
金苹果的食用方法 浏览:915
韩国娃娃面膜使用方法 浏览:964
新蒙迪欧灯光使用方法 浏览:201
音乐的知识与技能教学方法 浏览:729
igbt模块万用表检测方法视频 浏览:963
矛盾分析方法有哪几个 浏览:229
沙糖桔多效唑使用方法 浏览:258
抓女方出轨有哪些技术方法 浏览:322
葛氏捏筋拍打方法视频 浏览:809
人工挤羊奶的正确方法 浏览:928
数据清洗有哪些常用方法 浏览:218
早醒治疗方法 浏览:353