导航:首页 > 安装方法 > 配方法解步骤

配方法解步骤

发布时间:2023-10-02 09:27:48

① 配方法的基本步骤

1、第一步:把原方程化为一般式

把原方程化为一般形式,也就是aX²+bX+c=0(a≠0)的形式。

2、第二步:系数化为1

把方程的两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。

3、第三步:把方程两边平方

将方程两边同时加上一次项系数一半的平方,把左边配成一个完全平方式,右边化为一个常数项。

4、第四步:开平方求解

进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。


概述

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。

如何用配方法解方程

配方法解方程,方法如下:
1、首先,先进行移项,即将方程左边的常数移到方程右边。
2、在对方程进行配方,我们选择一次项的系数除以2作为方程左边的常数,再将常熟平方,放置方程左边。方程右边也加该常数的平方,使左右相等。
3、方程左边整理成平方的形式,再将右边系数整合。
4、最后通过因式分解计算结果。

③ 如何详解配方法

一、配方法
配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。

二、配方法的理论依据

(3)配方法解步骤扩展阅读:

配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2

④ 配方法解一元二次方程步骤是什么

配方法:将一元二次方程配成(x+m)^2=n的形式,再利用直接开平方法求解的方法。

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

(4)配方法解步骤扩展阅读:

一元二次方程成立必须同时满足三个条件:

①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

②只含有一个未知数;

③未知数项的最高次数是2。

⑤ 二元一次方程配方法的步骤

1.配方法:将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解的方法;

2.用配方法解一元二次方程的步骤:①一般形式:把原方程化为一般形式;②二次项系数化为1:方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③配方:方程两边同时加上一次项系数一半的平方;④完全平方:把左边配成一个完全平方式,右边化为一个常数;⑤开方:方程两边同时开平方,得到一元一次方程;⑥得解:解一元一次方程,得出原方程的解;

3.说明:配方之后形成“左平方右常数”的形式,如果方程右边是非负数,则方程有两个实根;如果右边是一个负数,则方程没有实数根;配方法的理论依据是——完全平方公式a²+b²+2ab=(a+b)²;配方法的关键是——先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方;

4.举例:

配方法解方程

5.有不明白的地方欢迎追问!

⑥ 配方法怎么配方

用配方法解一元二次方程的一般步骤:

1、把原方程化为的形式。

2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1。

3、方程两边同时加上一次项系数一半的平方。

4、再把方程左边配成一个完全平方式,右边化为一个常数。

5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。


(6)配方法解步骤扩展阅读:

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。

由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2,可得:

这个表达式称为二次方程的求根公式。

阅读全文

与配方法解步骤相关的资料

热点内容
报表的正确方法图解 浏览:379
苹果下载闹铃铃声怎么设置在哪里设置方法 浏览:40
一个月快速增重20斤的方法 浏览:106
如何降低肌肉兴奋的方法 浏览:332
电脑阅卷快速写字方法 浏览:949
林海真假雅马哈摩托车的鉴别方法 浏览:602
无线光猫连接打印机的方法 浏览:283
人都变瘦的方法是什么呢 浏览:105
医用污水提升泵安装方法 浏览:75
电容电压低的解决方法 浏览:971
如何减脸上的赘肉最有效的方法 浏览:487
哪些方法可以减少铁生锈 浏览:721
如何放松快乐的学习的方法 浏览:829
中网安装方法 浏览:527
早搏的症状和治疗方法 浏览:556
桑葚干食用方法视频 浏览:206
治疗除湿最好方法 浏览:6
教学测量的基本方法 浏览:925
ddp的分配方法包括哪些 浏览:516
设计师面试的问题及解决方法 浏览:742