导航:首页 > 安装方法 > 颗粒测量方法

颗粒测量方法

发布时间:2022-02-01 21:10:38

如何检测内存颗粒

01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF
1 2 3 4 5 6 7 8
闪动的一排测试数字代表内存8颗粒的测试情况。
从左至右,0-7代表第一区域,8-F代表第二区域;0-7代表第三区域,8-F代表第四区域;……依次代表内存条的8颗颗粒。
⒈DDR8位与16位的单面测法:
⑴. 0-7(1 )区域如果出现乱码,代表这根DDR内存条的第1颗粒已经损坏
⑵. 8-F(2 )区域如果出现乱码,代表这根DDR内存条的第2颗粒已经损坏
⑶. 0-7(3 )区域如果出现乱码,代表这根DDR内存条的第3颗粒已经损坏
⑷. 8-F(4 )区域如果出现乱码,代表这根DDR内存条的第4颗粒已经损坏
⑸. 0-7(5 )区域如果出现乱码,代表这根DDR内存条的第5颗粒已经损坏
⑹. 8-F(6 )区域如果出现乱码,代表这根DDR内存条的第6颗粒已经损坏
⑺. 0-7(7 )区域如果出现乱码,代表这根DDR内存条的第7颗粒已经损坏
⑻. 8-F(8 )区域如果出现乱码,代表这根DDR内存条的第8颗粒已经损坏
注意:DDR的颗粒排列循序是1-2-3-4-5-6-7-8
⒉如果你是128M的双面DDR内存,如以上显示界面图:
1-16M ----------------------------------------------------------------------------
16-32M ------------------------------------------------------------------
32-48M --------------------------------------------------------------------------------------------
48-64M-----------------------------------------------------------------------------------------------
从1M到64M的上面的4根虚线上出现乱码的话,说明这根内存的的第一面的颗粒有问题(判断哪个颗粒的好坏按照以上的说明)

64-80M -------------------------------------------------------------------------------------------------
80-96M ------------------------------------------------------------------------------------------------
96-112M----------------------------------------------------------------------------------------------
112-128M-----------------------------------------------------------------------------------------------
从64M到128M的上面的4根虚线上出现乱码的话,说明这根内存的的第二面的颗粒有问题(判断哪个颗粒的好坏按照以上的说明)
意:在内存的PCB板上的两边标着1与92的代表第一面,93与184的代表第二面。1-128M的8根虚线是用来区分两面区域的作用.
⒊SD的8位与16位的单面测法:
⑴. 0-7(1)区域如果出现乱码,代表这根SDR内存条的第8颗粒已经损坏
⑵. 8-F(2)区域如果出现乱码,代表这根SDR内存条的第4颗粒已经损坏
⑶. 0-7(3)区域如果出现乱码,代表这根SDR内存条的第7颗粒已经损坏
⑷. 8-F(4)区域如果出现乱码,代表这根SDR内存条的第3颗粒已经损坏
⑸. 0-7(5)区域如果出现乱码,代表这根SDR内存条的第6颗粒已经损坏
⑹. 8-F(6)区域如果出现乱码,代表这根SDR内存条的第2颗粒已经损坏
⑺. 0-7(7)区域如果出现乱码,代表这根SDR内存条的第5颗粒已经损坏
⑻. 8-F(8)区域如果出现乱码,代表这根SDR内存条的第1颗粒已经损坏
(注: PCB板上从1到84为第一面,颗粒的排列顺序从1到84为8-7-6-5-4-3-2-1,切记注意)

Ⅱ 粒度测试的基本方法

粒度测试的方法很多,据统计有上百种。目前常用的有沉降法、激光法、筛分法、图像法和电阻法五种,另外还有几种在特定行业和领域中常用的测试方法。 沉降法是根据不同粒径的颗粒在液体中的沉降速度不同测量粒度分布的一种方法。它的基本过程是把样品放到某种液体中制成一定浓度的悬浮液,悬浮液中的颗粒在重力或离心力作用下将发生沉降。不同粒径颗粒的沉降速度是不同的,大颗粒的沉降速度较快,小颗粒的沉降速度较慢。那么颗粒的沉降速度与粒径有怎样的数量关系,通过什么方式反映颗粒的沉降速度呢?
① Stokes定律:在重力场中,悬浮在液体中的颗粒受重力、浮力和粘滞阻力的作用将发生运动,其运动方程为:
这就是Stokes定律。
从Stokes 定律中我们看到,沉降速度与颗粒直径的平方成正比。比如两个粒径比为1:10的颗粒,其沉降速度之比为1:100,就是说细颗粒的沉降速度要慢很多。为了加快细颗粒的沉降速度,缩短测量时间,现代沉降仪大都引入离心沉降方式。在离心沉降状态下,颗粒的沉降事度与粒度的关系如下:
这就是Stokes定律在离心状态下的表达式。由于离心转速都在数百转以上,离心加速度ω2r远远大于重力加速度g,Vc>>V,所以在粒径相同的条件下,离心沉降的测试时间将大大缩短。
② 比尔定律:
如前所述,沉降法是根据颗粒的沉降速度来测试粒度分布的。但直接测量颗粒的沉降速度是很困难的。所以在实际应用过程中是通过测量不同时刻透过悬浮液光强的变化率来间接地反映颗粒的沉降速度的。那么光强的变化率与粒径之间的关系又是怎样的呢?比尔是律告诉我们:
设在T1、T2、T3、……Ti时刻测得一系列的光强值I1<I2<I3……<Ii,这些光强值对应的颗粒粒径为D1>D2>D3>……>Di,将这些光强值和粒径值代入式(5),再通过计算机处理就可以得到粒度分布了。 激光法是根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。由激光器的发生的激光,经扩束后成为一束直径为10mm左右的平行光。在没有颗粒的情况下该平行光通过富氏透镜后汇聚到后焦平面上。如下图所示:
当通过适当的方式将一定量的颗粒均匀地放置到平行光束中时,平行光将发生散现象。一部分光将与光轴成一定角度向外传播。如下图:
那么,散射现象与粒径之间有什么关系呢?理论和实验都证明:大颗粒引发的散射光的角度小,颗粒越小,散光与轴之间的角度就越大。这些不同角度的散射光通过富姓氏透镜后在焦平面上将形成一系列有不同半径的光环,由这些光环组成的明暗交替的光斑称为Airy斑。Airy斑中包含着丰富粒度信息,简单地理解就是半径大的光环对应着较小的粒径;半径小的光环对应着较大的粒径;不同半径的光环光的强弱,包含该粒径颗粒的数量信息。这样我们在焦平面上放置一系列的光电接收器,将由不同粒径颗粒散射的光信号转换成电信号,并传输到计算机中,通过米氏散理论对这些信号进行数学处理,就可以得到粒度分布了。 电阻法又叫库尔特法,是由美国一个叫库尔特的人发明的一种粒度测试方法。这种方法是根据颗粒在通过一个小微孔的瞬间,占据了小微孔中的部分空间而排开了小微孔中的导电液体,使小微孔两端的电阻发生变化的原理测试粒度分布的。小孔两端的电阻的大小与颗粒的体积成正比。当不同大小的粒径颗粒连续通过小微孔时,小微孔的两端将连续产生不同大小的电阻信号,通过计算机对这些电阻信号进行处理就可以得到粒度分布了。如图所示:
用库尔特法进行粒度测试所用的介质通常是导电性能较好的生理盐水。 光阻法(Light Blockage),又称为光障碍法或光遮挡法,是利用微粒对光的遮挡所发生的光强度变化进行微粒粒径检测的方法,检测范围从1μm到2.5mm。
工作原理:当液体中的微粒通过一窄小的检测区时,与液体流向垂直的入射光,由于被不溶性微粒所阻挡,从而使传感器输出信号变化,这种信号变化与微粒的截面积成正比,光阻法检查注射液中不溶性微粒即依据此原理。 显微图像法包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。它的基本工作原理是将显微镜放大后的颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒的投影面积,根据等效投影面积原理得出每个颗粒的粒径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布了。
由于这种方法单次所测到的颗粒个数较少,对同一个样品可以通过更换视场的方法进行多次测量来提高测试结果的真实性。除了进行粒度测试之外,显微图像法还常用来观察和测试颗粒的形貌。 除了上述几种粒度测试方法以外,目前在生产和研究领域还常用刮板法、沉降瓶法、透气法、超声波法和动态光散射法等。
(1) 刮板法:把样品刮到一个平板的表面上,观察粗糙度,以此来评价样品的粒度是否合格。此法是涂料行业采用的一种方法。是一个定性的粒度测试方法。
(2) 沉降瓶法:它的原理与前后讲的沉降法原理大致相同。测试过程是首先将一定量的样品与液体在500ml或1000l的量筒里配制成悬浮液,充分搅拌均匀后取出一定量(如20ml)作为样品的总重量,然后根据Stokes定律计算好每种颗粒沉降时间,在固定的时刻分别放出相同量的悬浮液,来代表该时刻对应的粒径。将每个时刻得到的悬浮液烘干、称重后就可以计算出粒度分布了。此法目前在磨料和河流泥沙等行业还有应用。
(3) 透气法:透气法也叫弗氏法。先将样品装到一个金属管里并压实,将这个金属管安装到一个气路里形成一个闭环气路。当气路中的气体流动时,气体将从颗粒的缝隙中穿过。如果样品较粗,颗粒之间的缝隙就大,气体流边所受的阻碍就小;样品较细,颗粒之间的缝隙就小,气体流动所受的阻碍就大。透气法就是根据这样一个原理来测试粒度的。这种方法只能得到一个平均粒度值,不能测量粒度分布。这种方法主要用在磁性材料行业。
(4) 超声波法:通过不同粒径颗粒对超声波产生不同的影响的原理来测量粒度分布的一种方法。它可以直接测试固液比达到70%的高浓度浆料。这种方法是一种新的技术,目前国内外都有人进行研究,据说国外已经有了仪器,国内目前还没有。
(5) 动态光散射法:前面所讲的激光散射法可以理解为静态光散射法。当颗粒小到一定的程度时,颗粒在液体中受布朗运动的影响,呈一种随机的运动状态,其运动距离与运动速度与颗粒的大小有关。通过相关技术来识别这些颗粒的运动状态,就可以得到粒度分布了。动态光散射法,主要用来测量纳米材料的粒度分布。国外已有现成的仪器,国内目前还没有。

Ⅲ 怎样测量固体颗粒的孔隙率

测试氮气吸附量能计算孔隙率。

Ⅳ 某兴趣小组测量一种易溶于水且形状不规则的固体颗粒物质的密度,测量的部分方法和结果如图所示。 (1)用

(1) 168 (2) 70 (3) 2.4 ×l0 3 (4)小 (5)小

Ⅳ 总悬浮颗粒物的测量方法

大气中总悬浮颗粒物的测定(重量法) 用重量法测定大气中总悬浮颗粒物的方法一般分为大流量(1.1—1.7m3/min)和中流量(0.05—0.15m3/min)采样法。其原理基于:抽取一定体积的空气,使之通过已恒重的滤膜,则悬浮微粒被阻留在滤膜上,根据采样前后滤膜重量之差及采气体积,即可计算总悬浮颗粒物的质量浓度。
本实验采用中流量采样法测定。 1.中流量采样器:流量50—150L/min,滤膜直径8—10cm。
2.流量校准装置:经过罗茨流量计校准的孔口校准器。
3.气压计。
4.滤膜:超细玻璃纤维或聚氯乙烯滤膜。
5.滤膜贮存袋及贮存盒。
6.分析天平:感量0.1mg。 1.采样器的流量校准:采样器每月用孔口校准器进行流量校准。
2.采样
(1)每张滤膜使用前均需用光照检查,不得使用有针孔或有任何缺陷的滤膜采样;
(2)迅速称重在平衡室内已平衡24h的滤膜,读数准确至0.1mg,记下滤膜的编号和重量,将其平展地放在光滑洁净的纸袋内,然后贮存于盒内备用。天平放置在平衡室内,平衡室温度在20-25℃之间,温度变化小于±3℃,相对湿度小于50%,湿度变化小于5%;
(3)将已恒重的滤膜用小镊子取出,“毛”面向上,平放在采样夹的网托上,拧紧采样夹,按照规定的流量采样;
(4)采样5min后和采样结束前5min,各记录一次U型压力计压差值,读数准确至1mm。若有流量记录器,则可直接记录流量。测定日平均浓度一般从8:00开始采样至第二天8:00结束。若污染严重,可用几张滤膜分段采样,合并计算日平均浓度;
(5)采样后,用镊子小心取下滤膜,使采样“毛”面朝内,以采样有效面积的长边为中线对叠好,放回表面光滑的纸袋并贮于盒内。将有关参数及现场温度、大气压力等记录填写在表1中。
表1 总悬浮物颗粒物采样记录
____________________市(县) __________________监测点 月、日 时间 采样温度(K) 采样气压(kPa) 采样器 编号 滤膜 编号 压差值(cm水柱) 流量(m/min) 备注 开始 结束 平均 Q2 Qn 3.样品测定:将采样后的滤膜在平衡室内平衡24h,迅速称重,结果及有关参数记录于表2中。
表2 总悬浮颗粒物浓度测定记录
_____________市(县) _________________监测点 日期 时间 滤膜
编号 流量Qn
(m3/min) 采样体积
(m3) 滤膜重量(g) 总悬浮颗
粒物浓度
(mg/m3) 采样前 采样后 样品重 分析者___________________ 审核者____________________ 总悬浮颗粒物(TSP,mg/m3)=W/(Qn·t)
式中:W——采样在滤膜上的总悬浮颗粒物质量(mg);
t——采样时间(min);
Qn ——标准状态下的采样流量(m3/min),按下式计算:
Qn= Q2[(T3/T2)·(P2/P3)]1/2(273×P3)÷(101.3×T3)
=Q2[(P2/T2)·(P3/T3)]1/2(273/101.3)
=2.69×Q2[(P2/T2)·(P3/T3)]1/2
式中:Q2——现场采样流量(m3/min);
P2——采样器现场校准时大气压力(kPa);
P3——采样时大气压力(kPa);
T2——采样器现场校准时空气温度(K);
T3——采样时的空气温度(K)。
若T3、P3与采样器校准时的T2、P2相近,可用T2、P2代之。 1.滤膜称重时的质量控制:取清洁滤膜若干张,在平衡室内平衡24h,称重。每张滤膜称10次以上,则每张滤膜的平均值为该张滤膜的原始质量,此为“标准滤膜”。每次称清洁或样品滤膜的同时,称量两张“标准滤膜”,若称出的重量在原始重量±5mg范围内,则认为该批样品滤膜称量合格,否则应检查称量环境是否符合要求,并重新称量该批样品滤膜。
2.要经常检查采样头是否漏气。当滤膜上颗粒物与四周白边之间的界线逐渐模糊,则表明应更换面板密封垫。
3.称量不带衬纸的聚氯乙烯滤膜时,在取放滤膜时,用金属镊子触一下天平盘,以消除静电的影响。

Ⅵ GB∕T 29024-2012 粒度分析 单颗粒的光学测量方法这个标准哪里可以找到

给出的标准编号不甚准确。
GB/T 29024 为一系列标准。其包括下面四个部分:
GB/T 29024.1-20XX 粒度分析 单颗粒的光学测量方法 第1部分:光散射气溶胶谱仪(本部分暂未发布);
GB/T 29024.2-2016 粒度分析 单颗粒的光学测量方法 第2部分:液体颗粒计数器光散射法;
GB/T 29024.3-2012 粒度分析 单颗粒的光学测量方法 第3部分:液体颗粒计数器光阻法;
GB/T 29024.4-2017 粒度分析 单颗粒的光学测量方法 第4部分:洁净间光散射尘埃颗粒计数器。
以上,不知要找的是哪部分?

Ⅶ 土壤粒径的测量方法

干筛法是将土壤充分压碎,用不同孔径的筛子筛分。

吸管法即土粒经充分分散后在沉降筒内于静水中按斯托克斯定律进行沉降。一定时间后,在一定深度上只有小于某一粒径的土粒均匀地分布着;这时在这个深度层吸取一定量的悬液烘干称其质量,可以计算出小于该粒径土粒的含量。

比重计法也是以斯托克斯定律为依据,用特制的甲种比重计于不同时间内测定某深度处土粒悬液的密度,即可计算出小于某粒径土粒的含量。

(7)颗粒测量方法扩展阅读

土壤单粒是在岩石矿物风化、母质搬运和土壤形成过程中产生的,在完全分散时 可以单独存在,用简单的物理或化学方法不能再细分,只能通过研磨、溶解或化学处理才能细分的单个的土壤矿物颗粒。

包括各种矿物碎片、碎 肩和胶粒以及有机残体碎屑。复粒是由各种单粒在物理化学和生物化学作用下复合而成的,包 括黏团、有机矿质复合体和微团聚体。

单粒、复 粒可以进一步通过物理、化学、生物化学和生物作用而黏结或团聚,形成各种大小、形状和性质不同的团聚体、结构体。单粒、复粒和结构体构成了土体的固相部分,土粒及粒间孔隙的大小、 形状和分布对土壤理化性质有重要影响。

Ⅷ 液压油颗粒度检测一般采用什么标准方法

液压油颗粒度检测一般用NAS1638和ISO4406的方法检测,我们公司有找华越检测做油品检测,从他们那里了解到的

Ⅸ 塑料颗粒的检验标准及方法

塑料及塑料产品通常需要进行如下性能检测:
1- 物理化学性质;
1.1密度和相对密度: 通常采用浸渍法,常见检测标准包括ISO 1183,ASTM D792 ,ASTM D1505,GB/T 1033。
1.2吸水性:试样在经过下燥后,在规定的试样尺寸、规定的温度、规定的浸水时间下的吸水量。常见检测标准包括ISO 62,ASTM D570,GB/T 1034。
1.3 耐化学药品性:塑料耐酸、耐碱、耐溶剂和其他化学品的能力。常见检测标准包ISO 175,ASTM D543, GB/T 11547。

2- 力学性能,也称机械性能;
塑料力学性能常用的检测项目包括:
2.1 拉伸性能:拉伸弹性模量;拉伸强度;断裂伸长率;泊松比。常见检测标准包括ISO 527,ASTM D 638,GB/T 1040-2006;
2.2 弯曲性能:弯曲弹性模量;弯曲强度。常见检测标准包括ISO 178,ASTM D790,GB/T 9341
2.3 压缩性能:压缩弹性模量;压缩强度。常见检测标准包括ISO 604,ASTM D695,GB/T 1041;
2.4 撕裂性能:撕裂强度。常见检测标准包括ISO 6383,ASTM D1004,GB/T 16578。
2.5 摩擦和摩损。常见检测标准包括ISO 8295;ISO 5470,ASTM D1044,GB/T 3960,GB/T 19089,GB/T 5478。
2.6 剪切性能:剪切强度。常见检测标准包括ISO 6721―2,5,ASTM D5279。
2.7 抗冲击性能:简支梁;悬臂梁;落锤;落球;仪器化落镖法;拉伸冲击。常见检测标准包括ISO 180,ASTM D256,GB/T 1843;ISO 179,GB/T 1043;ISO 6603,ASTM D3763;ASTM D 3420,GB/T 8809。
2.8 硬度:球压痕;布氏硬度;洛氏硬度。常见检测标准包括ISO 2039,ASTM D785, GB/T 2411,GB/T 3398,GB/T 9342。
2.9 粘接性能。常见检测标准包括ISO 15509,ASTM D 3164,ASTM D3163,GB/T 16276。
2.10 耐疲劳性。ISO 13586-1,ASTM D5045。
2.11 蠕变和应力松弛。常见检测标准包括ISO 899-1/-2, ASTM D2990。
3- 热性能;
3.1 熔体质量流动速率(MFR)和熔体体积流动速率(MVR),常见检测标准包括ISO 1133,ASTM D 1238,GB/T 3682;
3.2 维卡软化点(VST);常见检测标准包括ISO 306,ASTM D1512,GB/T 1633;
3.3 热变形温度(HDT);常见检测标准包括ISO 75,ASTM D 648,GB/T 1634;
3.4 玻璃化转变温度和熔点(结晶行为)(DSC);常见检测标准包括ISO 11357,ASTM D3417,GB/T 19466;
3.5 热膨胀系数(TMA);,常见检测标准包括ISO 11359,ASTM E 831,GB/T 1036;
3.6 动态力学性能(DMA);,常见检测标准包括ISO 6721。
3.7 热失重(TG);,常见检测标准包括ISO 11358。
3.8 脆化温度;,常见检测标准包括ISO 974,ASTM D746,ASTM D1790,GB/T 5470。
3.9 流变行为:常见检测标准包括:转矩流变仪(ASTM D3795),毛细管流变仪(ISO 11443,ASTM D3835), 旋转流变仪(ISO 6721-10,ASTM D4440)。

4- 电性能;
4.1 体积电阻率,常见检测标准包括 IEC 60093,ASTM D257,GB/T 1410;
4.2 介电强度,常见检测标准包括IEC 60243,ASTM D 149;
4.3 介电常数,常见检测标准包括IEC 60250,ASTM D150,GB/T 1409;
4.4 介质损耗因数,常见检测标准包括IEC 60250,ASTM D150,GB/T 1409。

5- 耐老化性能;
5.1 实验室光源曝露,常见检测标准包括ISO 4892 ,GB/T 16422;
5.2 大气自然暴露,常见检测标准包括ISO 877,ASTM D1435,GB/T 3681;
5.3 热空气暴露,常见检测标准包括GB/T 7141;
5.4 湿热暴露 ,常见检测标准包括ISO 4611,GB/T 12000。

Ⅹ 颗粒硬度、强度如何测定

药品的话,买个自动颗粒强度测定仪好了,KHKQ-100型。或者KQ-3型颗粒强度测定仪。现在强度仪用到的地方很多,性价比很高的。

与颗粒测量方法相关的资料

热点内容
404x125的简便运算方法 浏览:8
水泥多孔砖砌墙方法图片 浏览:705
孢谷草种植方法 浏览:283
莴笋青菜种植方法 浏览:736
前列腺增生怎么治疗方法 浏览:846
12伏蓄电池存电量计算方法 浏览:219
冲压工36技计算方法计算实例 浏览:858
骨化三醇免疫治疗方法 浏览:306
三联疗法如何服用方法 浏览:426
93乘43加91的简便方法 浏览:393
海螺吃了头晕有什么方法解决 浏览:812
如何写通项方法 浏览:674
小学生如何写作业快的方法 浏览:347
卫星手机夜景拍摄方法 浏览:97
怎么做瘦肚子最快方法 浏览:11
考场查词典技巧和方法 浏览:639
魔芋水的制作方法视频 浏览:493
同分母分数加减法教学方法分析 浏览:323
平焊单面焊双面成型的教学方法 浏览:601
查询电脑图片有多张的方法 浏览:429
© Arrange www.lostcanyon.org 2012-2022
温馨提示:资料来源于互联网,仅供参考