导航:首页 > 安装方法 > 比色法测定金品位的方法步骤

比色法测定金品位的方法步骤

发布时间:2023-08-23 03:32:06

‘壹’ 怎么用最简单的方法测重金属

1. 基本原理
化学检测仪器三部分组成。其中电解质溶液即电分析化学的分析对象。电化学传感器也称为电极,根据应用形式不同,又分为双电极,三电极,四电极体系。电极之间通过电路与检测仪器连接。检测时,电流通过连接电极的外电路从一个电极流到另一个电极,同时电极/溶液界面上发生电化学反应,伴随着反应的进行,电解质溶液中的正负离子会在电极之间沿电场方向发生移动,使得电荷能够在溶液和电极之间进行传递。
2.重金属检测方法
根据国际纯粹与应用化学联合会的分类方法,电化学分析一般可分为三大类。第一类为不涉及双电层和电极反应的方法,如电导分析、高频滴定分析等;第二类为涉及到双电层但不涉及电极反应的方法,如一些非法拉第测量方法等;第三类为同时涉及双电层和电极反应的方法,如极谱法、伏安法、电位分析法、库伦分析法等大多数电化学分析方法。电化学分析中可用于对重金属元素进行分析的方法主要有以下几种。
2.1电位分析法
电位分析法(PotentiometricMethod)是在保持电极之间不产生电流的情况下,通过测量电极之间的电位或电动势变化来对被测溶液中的物质成分以及含量进行测量的一种电化学分析方法。在电位分析法中应用较为广泛的是离子选择性电极。离子选择性电极(Ion-selective Electrode )是一类利用膜电势测定溶液中离子的活度或浓度的电化学传感器,当电极与待测离子接触时,敏感膜与溶液的异相界面上会产生与被测离子活度相关的膜电势,而活度又可在一定条件下转换为离子浓度。离子选择性电极具有使用方便、检测速度快、仪器结构简单、功耗低、操作方便等优点。宋文撮等采用离子选择性电极对海水中的铅、镉、铜进行了测定,实验表明传感器检测结果准确、性能可靠、成本低廉,适合在现场对重金属进行快速监测。刘新露等釆用离子载体掺杂PVC膜制作了一种重金属锌离子选择性电极并将其应用于对工业废水以及饲料中锌的检测, 结果表明该电极具有响应时间短、稳定性好等优点。目前离子选择性电极的主要缺点是检测灵敏度和准确度相对较低,实现痕量分析较为困难,由于其敏感膜易受溶液中其它离子的影响,因此在对实际样本进行测量时常存在多离子交叉影响问题,另外敏感膜的使用寿命较短也是制约离子选择性电极应用的一个重要问题。
2.2电导分析法
电导分析法(Method of Conctometric Analysis)是一种通过测量溶液的电导率来对被测物质进行定性和定量分析的方法。目前应用较多的为直接电导分析和电导滴定分析。电导分析具有检测速度快,仪器结构简单,操作方便等优点。但是电导分析一般只能测量溶液中所有离子的总体电导率,对于复杂溶液体系,很难对其中离子种类进行分辨,方法选择性较差。
2.3极谱法
极谱法(Polarography)是一种通过检测电化学反应过程中产生的极化电极的电流-电位(或电位-时间)关系来对溶液中被测物质成分和浓度进行分析的方法。极谱法一般采用能够表面更新的液态滴束电极作为工作电极。按照检测原理区分,极谱法可分为电位控制和电流控制极谱两大类。而按照工作电极扫描方式区分,极谱法可分为直流极谱法、交流极谱法、单扫描极谱法、方波极谱法、脉冲极谱法、半微分极谱法等多种。极谱法可用于测定铅、镉、媒、锡、镉等多种重金属离子,其灵敏度可达到l(r9mol/L,具有检测灵敏度高、分辨能力强等优点,因此被广泛应用在冶金、食品、环境分析等多个领域。
2.4溶出伏安法
伴随着极谱法的广泛应用,滴束电极在上个世纪成为电化学分析中应用最为广泛的工作电极。滴亲电极的主要优点是电极表面可周期性更新,并且较容易控制其工作表面积。但是未有剧毒且易挥发,使用后的废莱处理较为麻烦,另外当对检测溶液进行搅拌时,滴亲电极容易发生变形,从而影响其分析准确性。随着电分析化学技术的发展,固态电极的应用愈来愈广泛。Kolthaff和Laitinen等人首先将极谱法的电流-电位分析技术应用到固态电极上,从而提出了伏安分析方法。与极谱法相比,伏安法具有更高的检测灵敏度和更低的检测下限,同时由于采用固态电极,伏安法更加适合于进行现场在线分析。与极谱法类似,伏安法根据电势扫描方式不同又可分为线性伏安、阶梯波伏安、脉冲波伏安、正弦波伏安等多种。在进行重金属分析时,经常采用电解富集技术首先将被测离子从较稀释的溶液中浓缩富集到工作电极表面,随后采用伏安分析方法使电极表面富集的金属在很短的时间内重新溶出,从而获得比普通伏安法更为强烈的法拉第电流,这种方法称之为溶出伏安法。溶出伏安法按照电解富集原理的不同可分为阳极溶出伏安法、阴极溶出伏安法以及吸附溶出伏安法等。
(1)阴极溶出伏安法
阴极溶出伏安法(Cathodic Stripping Voltammetry)检测时需要经历电沉积、静置、溶出三个过程。溶液中的被测阴离子首先在正电位下发生氧化反应并与电极材料结合形成一层难溶膜。随后溶液经过一段静置时间后,电势扫描从正电势扫向负电势,使阴离子再次溶出而产生一个阴极溶出电流峰。由于难溶盐均具有各自的还原电势,因此通过分析峰电流-电势关系图即可获知溶液中阴离子的种类,而通过测量峰电流强度可获得阴离子浓度信息。Long等利用方波阴极溶出伏安法结合铋膜修饰热解石墨电极对水中的痕量进行了测量,检测限达到0.7 ng/L。Sophie等采用方波阴极溶出伏安法,结合铋膜修饰铜电极对工业废水、地表水以及自来水中的Ni2+进行了检测,结果表明该方法具有较高的检测灵敏度和选择性。
(2)吸附溶出伏安法
吸附溶出伏安法(Adsorptive Stripping Voltammetry)不采用电势沉积的方法富集被测物质,而是通过在电极表面修饰一些离子络合剂或配合剂的方式使得被测离子与之结合形成络合物,从而吸附富集在电极表面,随后采用电势扫描的方法使被测离子从电极表面溶出,分析获得的伏安曲线即可获知被测物质种类和浓度信息。吸附溶出伏安法是伴随着化学修饰电极的发展而逐渐产生的,其主要优点是检测灵敏度高、精确性好、仪器结构简单、操作方便等。狄晓威等釆用杯芳经衍生物对玻碳电极进行修饰,然后采用吸附溶出伏安法对混合水样中的微量铅进行了测定,其方法检出限达到陈士昆等利用槲皮素修饰碳糊电极结合吸附溶出伏安法对人血清中的铅进行了测定,结果表明,该方法检测灵敏度高、准确性好,传感器检出限为8.0moI/L吸附溶出伏安法主要缺点是受共存吸附物质干扰较大,在电极上容易发生竞争吸附作用,从而影响其检测灵敏性。另外由于吸附富集过程相比于电沉积过程速度较慢,因此吸附伏安法检测时间一般较长。
(3)阳极溶出伏安法
阳极溶出伏安法(Anodic stripping analysis, ASV)是电化学重金属检测最为常用的一种手段。与阴极溶出伏安法类似,阳极溶出伏安法也包括电沉积、静置、溶出三个阶段。其工作示意图如图1-2所示。分析时首先在工作电极上施加一个恒定负电势,使得溶液中的多种金属阳离子在电极表面发生还原反应从而沉积在工作电极表面。经过一段时间的富集后,电极表面被测物质浓度明显提高。经过一段溶液静置期后,仪器控制工作电极上的电势从负电位向正电位进行扫描,当电势到达某种金属的氧化电势时,该金属迅速氧化溶出形成一强烈的溶出电流峰,记录电流-电势曲线即可获得阳极溶出伏安图。由于不同的重金属有不同溶出电势,对伏安图中溶出电流峰位置进行分析即可获知溶液中所含重金属离子的种类,而溶出电流峰的大小与该金属离子的浓度成正比,据此可获得重金属离子浓度信息。
阳极溶出伏安法分析时电极上发生的电化学反应可以表示为:
阳极溶出伏安法具有检测灵敏度高、检测限低(重金属检测限可达到10-12mol/L)、分析速度快、可同时检测多种重金属元素(4-6种)等优点,同时其检测仪器结构简单、操作简便、易于实现自动化,因此被广泛应用于环境、食品、工业、医疗监控等多个领域。Christos等采用方波脉冲伏安法以秘金属膜为工作电极对怜肥中的铅和铺元素进行了分析,结果表明该方法检测灵敏度较好,检测限达到铅:0.5ng/L,镉:1 Mg/Lo Meucci等利用强酸和双氧水对食用鱼肉进行消解,以醋酸缓冲液为电解质,采用方波阳极溶出伏安法对样本中的铅、镊、莱、铜离子进行了检测,结果表明该方法具有较高的检测准确性,可实际应用于对有机物质中重金属元素的分析。国内王亚珍以乙炔黑/壳聚糖修饰玻碳电极为工作电极,采用阳极溶出伏安法对湖水中的痕量铅进行了检测,结果表明阳极溶出法具有很好的检测灵敏度,方法检测限达到mol/L。平建峰等采用厚膜碳楽电极结合方波脉冲阳极溶出伏安法对水溶液中的铅和镉离子进行了检测,并对溶出伏安法的工作参数进行了分析,结果表明,阳极溶出伏安法检测灵敏度高、准确性好,实际应用中溶液中的溶解氧以及共存离子对检测无明显影响。

‘贰’ 火试金的具体过程,具体到每步的操作

简介了.干法—火试金法—铅试金的操作规程、试剂的作用、操作规程应注意的事项、操作规程中易出现的问题及克服的方法。介绍一个笔者多年使用的成熟的铅试金方法。

(二)测定金矿品位的方法简谈:

实践证明取样代表性的问题在金矿测定中很重要,在(一)中简谈了制备具有代表性的化验样品的问题。既是制备好的化验样,在测定时取样代表性也是不能忽略的,由于金矿中金的不均匀的特点,为保证测定结果的准确性和可靠性需大取样量。一般湿法试金取样量在10~30g,(当品位为Au≥0.5×10-6时,取样量≥25g,只有当品位Au≥10×10-6时才可以减少,但最少也不能低于10g,分散流化学探矿样品在5~10g)。火试金取样量为30~50g。

众所周知,不同含量的样品,由于方法的灵敏度不同,需用不同的测定手段。金矿测定更应重视测定手段的选择,需适当,否则会造成偏差或失败。举例见表3

金的品位与常选用的分析手段 表3

含金量的范围

(单位10-6)

常 选 用 的 分 析 手 段

0.0005~2。0

分光光度法.发射光谱法、原子吸收光谱法

>2。0~30。0分光光度法、

原子吸收光谱法、

滴定(碘量)法、火试金称量法

>30。0~100。0原子吸收光谱法、

滴定(碘量)法、火试金称量法

>100。0

滴定(碘量)法、火试金重量法

金矿测定时,试样的分解方法目前大体分为两种:一是干法即火法试金法;另一是湿法试金,下面分别简谈一下:

1.干法—火试金法

火试金法是一种液—液高温萃取浓聚法,既是样品熔解也是富集的方法。火试金虽然因一般实验室条件达不到,在我国使用并不普遍。但它是一个测定金品位的很好的、经典的、很成熟的、很准确的、速度快的方法,也是国标及世界各国普遍采用的标准方法, 世界各国在商品交易时都确信火试金测定的结果,它不仅适用于金矿的测定,也适用于需要测定金的各种其它原材料和产品.用火试金测定矿石中金的含量,一般含量高的较准确,低含量误差较大.许多规程提到>1g/t的样品都可用火试金准确测定品位。火试金在我国不易普遍主要障碍是设备投入的费用高,实际上火试金所必须的两个设备:①高温炉(要求最高使用温度为1350℃)②感量十万分之一的精密天平。现已有很好的国产货供应,价格一般化验室也可接受,建议中型以上的专业金矿化验室,应该具有火试金测定金的能力。含金量>2×10-6时,一般火试金都可得到准确测定结果。

火试金有铅试金、锍试金、锑试金、铋试金等方法,常用铅试金和锑试金。

一.铅试金:一般操作过程主要分为1.配料2.高温熔融熔炼3.灰吹4.分金及称量等几步操作,下面分别简述:

1. 配料:

⑴配料有关名词:

① 硅酸度:硅酸度是指炉渣中酸组分(SiO2)氧与碱组分氧(2RO…)之比,称硅酸度或硅度.

硅酸度=炉渣中酸组分氧/炉渣中碱组分氧.

.. 硅酸 盐 的 硅 酸 度 表4

岩石名称(以SiO2与RO比值命名) 硅 酸 度 岩石的化学组成(R-二价碱金属素)

碱式硅酸盐(亚硅酸盐) 0.5 4RO·SiO2

中性硅酸盐 1.0 2RO·SiO2

被半硅酸盐 1.5 RO·SiO2

两倍硅酸盐 2.0 2RO·2SiO2

三倍硅酸盐 3.0 2RO·3SiO2

②还原力:还原力是通过还原力试验得到的,试验:称取10g碳酸钠+60g氧化铅+5g硼砂+4g二氧化硅+ 5g试样于粘土坩埚中混匀,加7~10g覆盖剂(硼砂)熔融(1000℃~1100℃),倒入铁模中取出铅扣,捶去熔渣,秤铅扣量,代入还原力公式计算得还原力.

铅扣质量(g)

F( 还原力)=

试样质量(g)

③氧化力:氧化力是通过氧化力试验得到的,试验:称取15g碳酸钠+50g氧化铅+7g硼砂+5g二氧化硅+2g淀粉+10g试样混匀,加7~10g覆盖剂熔融(条件同还原力试验),熔体倒入铁模中,取出铅扣,捶去熔渣称量,代入氧化力公式计算得氧化力.

铅扣质量(g)

氧化力=

试样质量(g)

④氧化铅空白值:新使用的氧化铅要测定它的含金量(空白值),取三份测定金取平均值。

以上提到的目的是为了合理配料,熔融时能生成流动性好,能与铅很好分离,能使金完全为铅捕

⑵计算:可根据试样量和化学组成按下面的方法计算所需试剂的加入量。

①碳酸钠(加入量)=G×(1.5~2.0) 式中G—试样量(g)

②氧化铅(加入量)=F×G×1.1+30 F—还原力

还原力低时氧化铅的加入量不应少于80g,含铜量高时除生成30g铅扣需要的氧化铅量外,还要补加30—50倍铜量的氧化铅。

③玻璃粉(二氧化硅)(加入量):先计算熔融过程中生成金属氧化物及加入的碱性熔剂,在0.5—1硅酸度所需的二氧化硅总量,减去试样中所含二氧化硅量,即为需加入的二氧化硅量。次量的1/3用硼砂代替,另外2/3按0.4g二氧化硅相当于1g玻璃粉还算出玻璃粉加入量(石英砂不用换算以二氧化硅计)。

④硼砂加入量=需加入的二氧化硅量×1/3÷0. 39,但不能少于5g.

⑤硝酸钾(加入量)=G×F—30 式中G—试样量(g)

4 F—还原力

⑥加入银的量:一般加入mg量的银,即加入含银5mg/ml的硝酸银1ml.实际上试样含银高时可不加.为了金捕集的完全,除了加够氧化铅生成所希望大小的铅扣外,加银量的多少也是非常重要的,试验证明Ag/Au>3,最少不能<2.5,如果银量比金量的三倍少,则会生成金包银,在分金操作中银分不净,影响金的测定结果偏高,多加银有利于生成较大的金银合粒,方便后面操作.

⑵混匀:可将试样和熔剂(配料)放在约一克,长×宽为30×30cm的聚乙烯袋中,缚紧袋口,剧烈摇晃5分钟即可均匀,,然后连袋防入试金坩埚中熔融,袋的还原能力算在内。

⑶应用实例:

下面简述硅酸度在铅试金富集金配料中的运用例子见表5:

2.高温熔融熔炼过程:

火试金实际上是一种液-液高温熔融萃取浓聚法,所以关键在于熔融能否使熔渣与金属分离彻底,并且使铅完全捕集金.在具体操作中注意以下几点:

熔融熔炼过程:掌握和控制好熔融温度是熔炼过程的关键,可分为三个阶段进行:

①预熔和造渣:有几种说法,400℃逐步升温到800℃~900℃保持0.5h;800℃~850℃或600℃~800℃保持40min~~80min,

②熔融最终温度也有几种说法:有1050℃~1100℃;有1060℃~1100℃;还有1160℃.

熔融时间一般为10min~15min.大多数人不用400℃预热,直接升温至800℃~900℃开始保温1h,继续升温至1050℃~1160℃保温10min~15min.整个熔融过程在两小时内完成即可.

③铅扣与熔渣分离:熔炼出炉,将坩锅平稳地旋动几次,并在铁板上轻轻地敲2—3下,使粘在坩锅壁上的铅珠下沉,接着小心仔细地将熔融物全部倒入事先预热的铸铁模中,冷却后,将铅扣与熔渣分离并将铅扣锤成正立方体并称量(应为25~40g)(有时还需要保留熔渣备查)。

硅 酸 度 在 铅 试 金 富 集 金 配 料 中 的 运 用 实 例 表5

岩石名 硅酸盐矿 氧化矿 金 矿 铜 矿 铅 矿

硅酸度 1.5~3.0 1.2~1.5 0.5~0.7 0.7~1.0 0.7~1.0

碳酸钠 试样量×1.5~ 试样量×1.3~ 试样量×1~ 试样量×1~ 试样量1~

2倍 1.5 倍 1.5倍 2倍 1.5倍

氧 铅扣27g,另加 铅扣27g,加1/2或 还原力<3时为 铅扣27g,另加 同金矿

化 二氧化硅或其 与试样相同量 还原力×1.4× 含银量的30~

铅 它杂质所需的 试样量.还原力> 50倍

熔融造渣的量 3时为还原力×

1.2×试样量

硼 试样量×1/3 同 左 同 左 试样量×1/2~

(不含水) 1/3,铜含量高时 试样量1/2

砂 少加(干量)

二 不 加 碱性熔剂和试样中

氧 碱性成分造渣时用 同 左 同 左 同 左

化 量减去试料中二氧

硅 化硅含量

淀粉或 试样量×2~ 淀粉量=(氧化力× 硝石量=(还原力

3.5(淀粉) 试样量+铅扣量) ×试样量-铅扣 同 左 同 左

硝石 ÷12 量)÷4

3.灰吹:

⑴灰吹前的准备工作①灰皿的制作及预热:灰皿的大小可根据需要制作,一般如图:制灰皿的原料使用骨灰和水泥做成(-80目骨灰;500#水泥等量混合加12%~15%的水压成形;纯水泥的灰皿不好用,最好使用纯-200目镁砂和500#水泥(855+15)混合制作灰皿.压成型的灰皿于荫凉通风处(避免日晒及烘烤)阴干(约三个月至半年).是用时于马弗炉1000℃预热30min后检查无裂纹才能使用② 铅扣的制作及清理:经熔融的样品倒入预先摸了油的铁模中,冷却至室温,脱模,捶去粘在金属铅(扣)上的熔渣并刷去残留物(必要时需称量铅扣用于检查熔融过程及配料是否正确),用小锤将铅扣捶成正方体形.并将粘复在铅扣上的残渣清理干净。

⑵灰吹:将清理干净的立方体铅扣放入预热的灰皿中,将灰皿移入马弗炉里,关炉门于850℃~900℃保温,待铅扣全部熔融脱模熔化完全,隙开炉门供给充分氧气进行灰吹,灰吹的整个过程应保持800℃~850℃(温度过高会增大损失,温度过低反而会生成“铅包金”即所谓“冻结”现象,对分金不利需重新灰吹),当氧化铅生成并且被灰皿完全吸收后,会在灰皿表面出现金银合粒的“闪光,这时应立即将灰皿移至炉门口,冷却”,取出金银合粒.

⑶金银合粒的清理及称量: 取出金银合粒后,用毛刷清理干净粘在上面的残渣,于感量十万分之一的精密天平称量得金银合量.

4.分金:望文生意分金就是把金从合粒中分出来.

(1)分金的原理和方法:分金的原理很简单:利用金不溶于硝酸,银铜等杂质很易为硝酸溶解的化学性质. 普遍使用稀硝酸分金,用硝酸处理合粒,银及其它一些杂质溶解而金不溶,金银得以分开.一般使用一次或二次分金, 分金前将清洁的合粒置于不锈钢砧上, 用不锈钢小锤,捶成0.2~0.3mm的薄片,然后就可以进行分金了.

35mm

30mm

13m

Φ40mm

灰皿图

例:一次分金:于400ml烧杯中加20ml硝酸预热至90℃,放入合粒薄片,沸水加热30mi溶液,无13mm Cl2蒸馏水清洗金片3~5次,转入瓷坩埚中,烘干灼烧后,冷却, 二次分金法: 其实与一次分金法没有原则的区别,方法之间不过是硝酸的浓度不一样或用硝酸处理的次数不同.二次分金用多一些硝酸,方法也有一些, 但多大同小异,举一例简述如下:于50ml瓷坩埚中,加20ml硝酸(1+7)加热至近沸,将合粒薄片放入坩埚中,在蒸汽浴上加热至银分解完全(待氮的棕色氧化物基本停止逸出,再继续20min)金呈黑色残渣,用少量水稀释,小心将坩埚中液体倾出(勿将黑色残渣倒出).再加10ml硝酸(1+1),于电炉上加热至近沸15min后,再用少量水稀释,倾出溶液再用热水洗涤残渣4~5次,将坩埚烘干,放 入500℃~600℃马弗炉中灼烧10min,此时金片呈金黄色.冷却.称量为金量.合粒量减去金量为银含量和银加入量之和.

(2)影响分金的准确与否的因素:

①熔融时银的加入量:一般为金量的3倍以上即可,但实际上为了操作的方便和金不损失按下面量加入的:

含金量 <0.1mg~0.2mg >0.2mg~1mg >1mg~10mg >10mg~50mg >50mg 银+金(银加入比例) 20+1或30+1 10+1 6+1 4+1 3+1

②在分金操作中,各种方法都使用硝酸只是各方法使用的浓度不同或一次两次的区别,. 当分金时出现合质金薄片不溶解并呈黑色整块或分金后留下来的金薄片不是黑色残渣,而是带黄色的整块时,说明分金失败或分金不完全.这时应取出合质金块(薄片),加适量银用铅皮包裹,重新进行灰吹和分金.

③补正试验:遇高含量金矿,分金后称量的结果偏低,往往误认为是分金失误或分金损失,实际上有时高含量金矿在熔融过程中会损失,这只有发生在金含量大于10×10-6时才会有.遇这种情况需做补正试验,所谓补正试验就是将熔渣和灰皿中吸收氧化铅部分带走的金回收加以补正.就是将脱铅后的熔渣及灰皿中吸收氧化铅部分的灰皿捣碎,倒入粘土坩埚中加40g氧化铅;50g硼砂;3~4g淀粉搅拌均匀,加0.2ml硝酸银溶液(15g/L),覆盖一层覆盖剂,重新进行熔融、灰吹、分金.将回收的金加在被补正样品的结果中.金含量大于10×10-6的样品不一定都需做补正试验,实际上许多含金量高的样品不需要做补正试验,只要铅扣的量够,银量加的充分一般不会偏低,只有很少数样品才需要做补正试验.

5.以下就铅试金为例谈谈在火试金的过程中,需要严格控制的因素:

⑴金的损失及防止:

(一)配料不均匀时损失(飞散)及克服:可将试样和熔剂(配料)放在约一克,长×宽为30×30cm的聚乙烯袋中,缚紧袋口,剧烈摇晃5分钟即可均匀,,然后连袋防入坩埚中熔融,袋的还原能力算在内。

(二)熔融过程的损失及克服:

①铅扣大小的影响:一般铅扣20~35克之间损失小。当称样量50克时,28克粗铅(铅扣)可以扑集全部金,铅扣小于15克时,金回收率减少。称样量15克时,铅扣需23克。称样量30克时,铅扣需30克,当试样量在70~100克时,铅扣量为试样量的40%这样才能保证金被全部捕集.

②熔融温度的影响:一般认为1160℃为熔融最佳温度,这时金的平均损失只有0.63%。低于1160℃损失增大:例1093℃时损失为0.81%;1038℃时损失为0.91%。这主要是因为熔渣粘度过大金不易下降到铅扣中所致.高于1160℃损失也会增大为0.88%。在实际操作中要灵活掌握温度,在考虑温度的同时要结合考虑其他因素.并非温度高或低就好,总之必须要有利于金富集于铅扣中。

③熔融时间对金损失的影响::当熔融温度达到:1160℃后以保持1~2h最好,1.5h时平均损失为0.55%,>1.5h损失率增加为0.70%,在实际操作中往往是注意了最终的熔融温度和保温的时间,常忽略了造渣期间的保温时间(造渣温度600℃~700℃最好).

④覆盖剂的影响:一般覆盖剂用食盐或硼砂,实际上食盐在高温时会使银挥发,含铅时会生成有毒的挥发性的铅氯化物(PbCl2)污染环境,所以提出最好使用硼砂+苏打(10+15)做覆盖剂。

⑤金在渣和坩埚中的损失:控制好最终熔融温度可减少损失,940℃平均损失为0.39%;1000℃~1060℃平均损失为0.195%、1200℃~1300℃平均损失为0.146%。

⑥铅扣整形时平均损失:0.094%.

(三)火试金会吹过程中金的损失及克服:

①灰吹的温度影响:一般是温度越高损失越大,应在尽可能低的温度下灰吹,以铅扣不冻结为度,一般控制在800℃~850℃。

② 金和银的比例对金损失的影响:例1000℃灰吹,不加银损失为1.2%,有十倍金量的银存在时灰吹金损失只有0.62%,有二十倍金量的银存在时灰吹金损失0.60%,有三十倍金量的银存在时灰吹金损0.58%,所以一般加入金量3倍以上的银防止灰吹时金的损失为宜。

③铅扣中杂质的影响:由粗金火试金精炼灰吹时的数据可见一斑,当Cu<2g时,金的回收率99,00%.当Cu增至2.5g时金的回收率降至93.60%.如铅扣中Cu为33g时,则灰吹不能进行,最后留下的是含金的铜粒。

二.铅试金外常用的火试金富集金的方法:

由于铅试金铅的毒性大,有许多研究用其它低熔点金属试金代替铅试金,目前尚有锍试金、锡试金、锑试金、铋试金等方法.现将用的多的锑试金和锍试金简介如下:

⑴锑试金:由于铅试金铅中含微量金,在灰吹中有微量损失.故铅试金正如上文中所述:微量金测定易产生较大误差,采用锑做捕集剂的新的火试金方法,它有一定的优越性.它富集微量金不仅富集完全,而且全部贵金属元素(包括六个铂族元素)都可富集完全.另一个优点是空白低.锑试金需用的设备简单.适合富集μg/g或ng/g微量或痕量级的金.锑比重小熔点低,易熔易生成锑扣,锑扣高温可使其挥发(灰吹)除去,如果锑中含有铋时,铋在锑后氧化并将铜、镍、钴从合金粒中排出,此时50mg铜10mg镍及20mg钴不影响灰吹,再加一些碳酸钾助溶剂,可提高熔渣的流动性有利于锑扣与熔渣分离.锑试金的分析步骤简述如下:10g样品与25g锑试金熔剂(碳酸钠+硫酸钾+硼砂=3+1+1)和10g捕集剂(三氧化二锑+三氧化二铋+淀粉=8+1+2)混合均匀后,移入50ml高铝坩埚中,滴入2滴硝酸银溶液(银为3mg/滴),若用发射光谱再加2滴钯溶液(钯为2mg/滴).坩埚放入预热至950℃的高温炉中,当温度回升至950℃时保温10min(使熔体平静)后,将熔体倒入铁模中,冷却,捶去熔渣取出锑扣(约7g),放在仰放的坩埚盖上,移入850℃~900℃高温炉中,灰吹至合粒不再发光发亮,取出,冷却,砸破坩埚盖,取出合粒.刷净称量和进行进一步测定程序.

⑵锍试金最初用于富集锇铱矿后来证明可用于富集六个铂族元素.用于富集金少用.

三.实例:

称量法测定岩石矿石金和银的品位

1.主题及测定范围:

该方法适用于金矿石、岩石,矿石及炉渣中金量和银量的测定方法测定范围:

金>5×10=6;银>10×10-6。

2.方法提要:

火法—铅试金是经典、成熟、精确的方法,试样经配料、熔炼得到适当量的含有贵金属的铅扣,经灰吹后得金+银合粒称量得金银合量。

金银合粒用稀硝酸处理银溶解达到分金的目的,残留的金经灼烧称量为金量。

金银合量—金量=银量。

3.试剂(也可用工业纯,应通过40目筛孔)及作用、设备

3.1氧化铅 熔炼中生成铅扣,聚集下沉时扑集金银聚集于铅扣中。

3.2二氧化硅或玻璃粉 强碱性熔剂,熔炼时与金属氧化物生成硅酸盐是熔渣的主要成分。

3.3碳酸钠 强碱性助熔剂可分解金属氧化物和硅酸盐,并可除硫。

3.4硼砂 和硅酸盐结合呈盐基性熔剂又是酸性熔剂,降低造渣熔点增加熔融物流动性

3.5硝酸钾 强氧化剂。1g硝酸钾可使3.5~4.0g 铅氧化成氧化铅,熔点339℃。

3.6小麦粉(面粉)还原剂1g 可还原生成10~12g铅。

3.7 铁钉 4寸,脱硫剂和还原剂。

3.8覆盖剂 食盐或硼砂[最好使用硼砂+苏打(10+15)作覆盖剂],盖在试料最上层隔绝空气防止被还原物质再氧化。

3.9硝酸 φ(NNO3)=30% 取硝酸(ρ1.40g/ml)30ml,以水稀释至100ml

3.10硝酸 ф(NNO3)=10% 取硝酸(ρ1.40g/ml)10ml,以水稀释至100ml

3.11纯银(含量99.99%)溶液:称取5.00g纯银用50ml硝酸溶解后,再加50ml硝酸稀释至1000ml,此溶液ρAg=5mg/ml 加入3倍金量,可使银完全熔解,消除熔炼过程中金包银导致分金失败。

3.12试金炉 最高工作温度1350℃

3.13试金耐火坩锅 一般用4#。

3.14铸铁模

3.15 灰皿 (或镁砂灰皿)骨灰皿:骨灰(牛羊骨通过48目筛)+400#普通硅酸盐水泥按质量(3+7)的比例混匀,加适量(约10%)水充分拌匀,用灰皿机压制成型(干皿为50~60g)。制成的灰皿置于通风的荫处风干三个月后使用,不能烘烤暴晒和接触有酸雾的气体,有裂隙的灰皿不能使用。(注:镁砂灰皿参照前面文章)

3.16微量天平(精密) 分度值0.01mg

4.试样

样品应用金矿化验样样特别程序加工粉碎、缩分、研磨至通过200目筛孔,送化验试样总量大于500g(并保存付样),待测定的部分试样还应于100℃~110℃烘干1h,于干燥器中冷却至室温,并保存于干燥器中。

5.分析步骤

5.1试料

称取试样30.00g(m)

5.2空白试验

随同试料作不少于二份空白试验,所取试剂必须来自同一瓶试剂

5.3配料:

根据不同试样(确定配料方案前应先作光谱等试验以了解矿石及试样的类型及主要组成)选择不同的配料方案,特殊的矿种及试样需经熔融试验后才能经计算和实验进一步确定配料方案。常见矿石配料方案可参见下表

..

常 见 矿 石 配 料 (单位:g)

矿 石 名 称 样品 碳酸钠 氧化铅 硼砂 玻璃粉 面粉 铁钉 硝石 食盐

硅盐矿石 30 50 45 10 2~5 3.0 30

碳酸盐矿石 30 45 45 5~10 10~15 3.0 30

硫 化 矿 30 55 30 10 15~20 3 30

氧 化 矿 30 45 45 10 10~20 3.0~4.0 30

铬 铁 矿 30 60 45 20 35~40 3.0~4.0 30

橄榄辉岩 30 45 45 15 20~25 3.0 30

选矿样精矿 30 50 30 8 15~20 3

5.4铅试金—分离富集

5.4.配料:确定配料方案后,将样品与所需配料倒入一广口瓶中混匀,倒入试金坩锅(3.13)中,加1ml纯银溶液(3.11)(若样品含银量大于含金量的3倍以上可不加),用20g覆盖剂或食盐(3.8)洗刷配料瓶并均匀地盖在试金坩锅(3.13)的试料上面。同批带空白。

5.4.2熔炼:将试金坩锅(3.13)置于已升温至600~800℃的试金炉(3.12)内,于800℃左右保温1h,接着继续升温至1050℃时保温10min后出炉(熔炼时间最好不超过2h,否则已还原的金属铅会重新氧化)。将熔融体倒入铸铁模(3.14)中,冷却后取出熔融物冷却块下面的铅扣。将铅扣锤成正立方形,称量(铅扣应为25g左右)。

5.4.3灰吹:将灰皿(3.15)编号后放入已升温到850~900℃的高温炉(马弗炉)中预热30min,然后依次将铅扣放在相应编号的灰皿(3.15)中(进行灰吹),关闭炉门1~2min,待铅扣完全熔化脱模后,半开炉门控制在850℃进行灰吹,特别在灰吹接近终了时温度一定不低于800~850℃(温度过低会使所生成的氧化铅不仅不能和熔铅分离,反而将铅包住并立即凝固产生‘冻结’现象。若此现象发生,应重新在800~850℃灰吹)。当氧化铅全部被灰皿(3.15)吸收后,会立即显出金、银合粒的闪亮光(即是灰吹完结)。取出灰皿、冷却。取出金、银合粒。

5.4.4 合粒称量:刷干净粘附金、银合粒上的杂物,于微量天平(3.16)称量(m1)

5.4.5分金及金粒称量:将清洁的金、银合粒,放入清洁的30ml磁坩锅中,用热水洗涤几次金、银合粒置于沸水浴上,加10~15ml沸热的硝酸(3.10),盖盖于沸水浴上加热至银完全溶解,小心倾出酸溶液,再加5~10ml沸热的硝酸(3.9),继续于沸水浴上加热15~20min,取下、冷却,小心倾出酸溶液,并用热蒸馏水洗涤金粒5~6次,于电炉上烘干磁坩锅后,将坩锅放入650℃的马弗炉(高温炉)中灼烧10min,取出冷却。小心仔细地将金粒移在微量天平上称量即为金的含量(m2)。

6.结果计算:

金品位计算: 式中:m2—微量天平上称得金粒质量,μg;

m—试样量,g。

银含量计算: 式中:m1—微量天平上称得金银合粒质量,μg;

m2—微量天平上称得金粒质量,μg;

m—试样量,g。

注:因为铅试金是非常好的富集金的方法,当称量金粒量m2<0.2mg称量的精密度不理想时,可用分光光度法测定金较准确,具体操作规程:将金粒置于原坩锅中,加3ml王水及加5~10滴氯化钾溶液(ρ(KCl)=200g/L)移至于沸水浴上蒸发至干,再加2ml盐酸(ρ1.19g/ml)沸水浴上蒸发至干,继续再加2ml盐酸(ρ1.19g/ml)沸水浴上蒸发至干,如此反复三次(无酸味)赶尽硝酸后,可用分光光度法(孔雀绿、结晶紫等方法)测定金品位

‘叁’ 高效液相色谱仪可以测定重金属含量吗 怎么测

一般情况下高效液相色谱主要测定有机物和一些无机离子,测定重金属一般可测定有机金属,比如甲基汞,但方法都是些文献方法,没有广泛使用。
多数情况下,测定重金属含量都不用液相色谱检测,而用原子荧光法(AFS)、电感耦合等离子体质谱法(ICP-MS),原子吸收光谱法(AAS),分光光度法(UV),电化学法(阳极溶出伏安法),X射线荧光光谱法(XRF)等 。下面是成本最低的目视比色法:
1 原理:重金属离子与负二价硫离子在乙酸介质中生成有色硫化物沉淀。重金属含量较低时,形成稳定的暗色悬浮液,可用于重金属的目视比色法测定。
2 适用范围:本方法适用于所有无机物中重金属的测定。检测范围为1~20ppm。
3 试剂与溶液:
3.1 铅标准贮备液的配制:称取硝酸铅159.8mg于100ml水中,加1ml浓硝酸溶解,稀释至1000ml。此溶液应贮存在无铅玻璃容器中。
3.2 铅标准液的配制:使用当天现配制,取10ml铅标准贮备液,稀释至100ml。该溶液中每毫升中含10µg铅。
3.3 PH=3.5醋酸盐缓冲溶液:溶解25.0g NH4AC于25ml水中,加38.0ml(6N)HCl,用6N NH4OH或6N HCl调至PH=3.5,以PH计为指示。然后将溶液稀释至100ml。
3.4 硫代乙酰胺溶液的配制:称取4g硫代乙酰胺,溶解于100ml水中。
3.5 甘油-碱溶液:将200g甘油与135g水混合,加142.5ml 1N NaOH及47.5ml水。
3.6 硫代乙酰胺-甘油溶液:取0.2ml硫代乙酰胺溶液和1ml甘油-碱溶液,于沸水浴上加热20秒,配好后立即使用。
3.7 对照品制备:取2ml铅标准溶液于50ml比色管中,用水稀释至25ml,用1N醋酸或6N NH3H2O调至PH=3.0~4.0(用精密试纸测验),稀释至40ml。
4 操作步骤
按产品标准的规定取样,并加适量水制备试液,加入适量盐酸,煮沸,冷却。滴加1:1氨水呈碱性,用水稀释至25ml,以精密试纸作指示,用1mol/L醋酸调PH=3.0~4.0,如需过滤,用10ml水冲冼坩埚和滤纸,将试液和冲洗水收集于50ml比色管中,稀释至40ml,混匀。
分别向样品、对照品试管中加入2ml PH=3.5缓冲液及1.2ml硫代乙酰胺甘油碱溶液,用水稀至50ml,混匀,2分钟后在白色表面上自上而下观测,对照品相对于样品为20PPm。

‘肆’ 怎么检测黄金

1、看颜色:黄金首饰纯度越高,色泽越深。在没有对金牌的情况下可按下列色泽确定大体成色(以青金为准则。所谓青金是黄金内只含白银成分);

2、深赤黄色成色在95%以上,浅赤黄色90--95%,淡黄色为80--85%,青黄色65—70%,色青带白光只有50--60%,微黄而呈白色就不到50%了。

3、看硬度:纯金柔软、硬度低,用指甲能划出浅痕,牙咬能留下牙印,成色高的黄金饰品比成色低的柔软,含铜越多越硬,折弯法也能试验硬度,纯金柔软,容易折弯,纯度越低,越不易折弯。

4、听声音:成色在99%以上的真金往硬地上抛掷,会发出叭哒声,有声无韵也无弹力。假的或成色低的黄金声音脆而无沉闷感,一般发出“当当”响声,而且声有余音,落地后跳动剧烈。

5、用火烧:用火将要鉴别的饰品烧红(不要使饰品熔化变形),冷却后观察颜色变化,如表面仍呈原来黄金色泽则是纯金;

6、如颜色变暗或不同程度变黑,则不是纯金。一般成色越低,颜色越浓,全部变黑,说明是假金饰品。

(4)比色法测定金品位的方法步骤扩展阅读:

黄金四种质地

1、赤金和纯金的意思相接近,但因时间和地方的不同,赤金的标准有所不同,国际市场出售的黄金,成色达99.6%的称为赤金。而境内的赤金一般在99.2%-99.6%之间。

2、色金,也称“次金”、“潮金”,是指成色较低的金。这些黄金由于其他金属含量不同,成色高的达99%,低的只有30%。

3、按含其他金属的不同划分,熟金又可分为清色金、混色金、k金等。清色金指黄金中只掺有白银成分,不论成色高低统称清色金。清色金较多,常见于金条、金锭、金块及各种器皿和金饰品。

4、混色金是指黄金内除含有白银外,还含有铜、锌、铅、铁等其他金属。根据所含金属种类和数量不同,可分为小混金、大混金、青铜大混金、含铅大混金等。

5、k金是指银、铜按一定的比例,按照足金为24k的公式配制成的黄金。一般来说,k金含银比例越多,色泽越青;含铜比例大,则色泽为紫红。

6、K值所表示的百分数,都只是一个大致的数,并不要求十分准确。而习惯上又多数是使用偶数K值,如24K、22K、20K、18K等。

7、18K的意思即指24份合金中含金18份,相当于75%左右的含量。K金计算方式:K金折合含金量的计算公式是:K值÷24×100%(即K值×4.1667%)

‘伍’ 现场快速比色方法

63.3.8.1 微珠目视比色法

方法提要

试样经王水分解,活性炭或泡塑富集后,试样中的金与TMK配位显色于含有掩蔽剂、缓冲溶液及有机萃取剂的乙醇、乙酸、水、辛醇的混合介质中,然后加水改变介质成分,使有机相富集Au-TMK配合物成微珠析出,直接在坩埚中目视比色。有机萃取剂的体积小至5μL,故该法的灵敏度比一般目视比色法要高1~2个数量级。

试剂

无水乙醇。

王水。

含掩蔽剂的缓冲溶液取2g尿素、1gNaF、1gEDTA溶于pH为3.5的100mL缓冲溶液中。缓冲溶液的组成为冰乙醇-水-氢氧化铵(75+20+5),用氢氧化铵调节至pH为3.5。

TMK显色剂(1)1mgTMK溶于100mL(90+10)乙醇-辛醇中(可用磷酸三丁酯代替辛醇)。

TMK显色剂(2)10mgTMK溶于100mL(7+3)乙醇-辛醇中。

金标准溶液ρ(Au)=1.0μg/mL(1+9)王水介质,使用时用(1+9)王水将其稀释为ρ(Au)=20.0ng/mL。

三氯化铁溶液(1g/L)。

氯化钾混合液5gEDTA、10g柠檬酸溶于100mL50g/LKCl溶液中。

十二烷基苯磺酸钠溶液(10g/L),也可用洗衣粉替代。

校准曲线

移取0.00mL、0.10mL、0.20mL、0.30mL、0.40mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL金标准溶液(20.0ng/mL)和0.10mL、0.20mL、0.40mL、0.60mL、0.80mL、1.00mL金标准溶液(1.0μg/mL),置于10mL瓷坩埚中,加2滴FeCl3溶液、2滴KCl溶液、5滴王水,置于水浴上蒸干。再加5滴HCl蒸干后,加0.1mLKCl混合液、0.1mL含掩蔽剂的缓冲溶液、0.05mL无水乙醇、50μLTMK显色剂(1),摇匀,加0.15mL蒸馏水。微珠析出,转动坩埚,使分散的细小微珠集中,加2滴表面活性剂,与试样对照比色。比出试样中低于10ng者之后,在10ng以上的标准再补加50μLTMK显色剂(1),滴加无水乙醇使微珠溶解,加4~5滴水,使微珠又析出,转动坩埚使有机相集中显出10~100ng色阶,与试样对照比色。再加100μLTMK显色剂(2),同上操作显示出200~1000ng色阶与试样对照比色。

分析步骤

称取5~20g(精确至0.1g)试样于250mL烧杯中,加40mL水、40mL王水,在电热板上微沸1h,取下加水至100mL,以活性炭动态吸附或泡塑静态、动态富集金。纸饼或泡塑放入10mL瓷坩埚内灰化或无臭灰化,加2滴KCl混合溶液、5滴王水,于水浴上蒸干。以下步骤同校准曲线。

如用于野外现场分析,矿样和活性炭纸浆饼无臭灰化后采用冷浸,方法如下:试样的冷浸用盐酸-氯酸钾,取样5g加入10mLHCl、5g氯酸钾、20mL水可溶解含900ng金的试样。灰化后的残渣采用冷浸,用1mL(1+1)HCl、0.1~0.3mLH2O2或0.1~0.5mL50g/L氯酸钾溶液、0.2~2mL(1+1)HCl都可行。

63.3.8.2 泡塑吸附-硫代米蚩酮目视比色法

方法提要

试样于聚碳酸酯溶样瓶中,加入王水溶样,聚氨酯泡沫塑料富集分离金,在小泡塑上用硫代米蚩酮直接显色后目视比色。称取10g试样时,可测定含量大于0.004×10-6的金。方法具有无污染、易操作的特点,是一个简易、快速的测定方法。

试剂

盐酸。

王水。

无水乙醇。

过氧化氢。

缓冲溶液(pH3~4)称取20g磷酸二氢钠溶于80mL水中,用H3PO4调节pH为3~4,移入100mL容量瓶中,用水稀释至刻度。

金标准溶液ρ(Au)=1.0μg/mL。

TMK溶液(0.02g/L)。

尿素溶液(200g/L)。

聚氨基甲酸酯泡沫塑料0.2g小方块及0.005g(7mm×4mm)小块二种,经水洗,水煮沸10min后备用。

EDTA溶液(50g/L)。

校准曲线

移取0.00mL、0.04mL、0.10mL、0.20mL、0.30mL、0.50mL、0.80mL、1.20mL、2.00mL的金标准溶液(1.0μg/mL)于瓷坩埚中,加入2~3mL(5+95)HCl、8滴EDTA溶液,加入一块0.005g小泡塑,振荡15~20min,取下,用水冲洗干净并挤干,将泡塑在尿素溶液中浸一下,挤干,再在缓冲溶液中浸泡一下,挤干。然后置于比色板上均匀地滴加50μLTMK显色剂,5min后在泡塑上目视比色。

分析步骤

称取10g(精确至0.1g)试样(含炭试样预先于600℃灼烧1~2h)于聚碳酸酯溶样瓶中,加25mL(1+1)王水,加盖并拧紧。放入沸水浴加热1h,取出冷却。向溶样瓶中加80~90mL水,加一块0.2g泡塑,加盖盖紧,于振荡器上振荡30min。取出泡塑,用水洗去矿渣,拧干。用半张定性滤纸(11cm)包裹,放入20mL瓷坩埚中,加3mL无水乙醇,放入500~600℃高温炉中,敞开炉门明火燃烧,熄后半关炉门,继续升温至600~650℃,至无黑色炭粒为止。也可将坩埚放在已加热的高温电炉上明火点燃无水乙醇,熄后用薄石棉板围住坩埚,继续升温至炭质除尽。往灰化过的坩埚中加1mL(4+6)HCl及3滴H2O2,于沸水浴上浸取10min。取下,加2~3mL(5+95)HCl、8滴EDTA溶液,摇匀,加泡塑吸附。以下操作同校准曲线。

注意事项

本法快速简便,可在野外用于现场分析。

‘陆’ 任务金矿石中金含量的测定

——泡沫塑料富集原子吸收光度法

任务描述

金在矿石中的含量一般较低,大概以0.xx~x.xxg/t计,在检测时通常需要先采用富集的方法,火试金以铅试金为主,湿法富集有泡沫塑料富集和活性炭富集等方法;然后采用原子吸收分光光度法进行测定。通过本次任务的学习,明白泡沫塑料富集金实验条件,掌握泡沫塑料富集金的操作方法;能够正确填写数据记录表格,正确填报实验结果。

任务实施

一、仪器和试剂准备

(1)仪器:原子吸收分光光度计,金空心阴极灯。

(2)泡沫塑料:将100g聚氨酯软质泡沫塑料(厚度约5mm)浸于400mL三正辛胺乙醇(3%)溶液中,反复挤压使之浸泡均匀,然后在70~80℃温度下烘干,剪成0.2g左右小块备用(一周内无变化)。

(3)硫脲-盐酸混合溶液:含5g/L硫脲的盐酸(2%)溶液。

(4)金标准溶液:称取0.1000g纯金置于50mL烧杯中,加入10mL王水,在电热板上加热溶解完全后,加入5滴氯化钠(200g/L)溶液,于水浴上蒸干,加2mL盐酸蒸发到干(重复3次),加入10mL盐酸温热溶解后,用水定容至100mL,此贮备液含金1mg/mL。取该溶液配制含金至100μg/mL及10μg/mL的标准溶液[盐酸(10%)介质]。

二、分析步骤

称取5~30g试样于瓷舟中,在550~650℃的高温炉中焙烧1~2h,中间搅拌2~3次,冷后移入300mL锥形瓶中,加入50mL王水(1+1),在电热板上加热近沸约1h(如含锑、钨时,应加入1~2g酒石酸,含酸溶性硅酸盐应加入5~10g氟化钠,煮沸),用水稀释至100mL,加入约0.2g泡沫塑料(预先用水润湿),用胶塞塞紧瓶口,在往复式振荡机上振荡30~90min,取出泡沫塑料,用自来水充分洗涤,然后用滤纸吸干,放入预先加入25mL硫脲-盐酸混合液的50mL比色管中,在沸水浴中加热15min,用玻璃棒将泡沫塑料挤压数次,取出泡沫塑料,将溶液定容到50mL,按仪器的工作条件,用原子吸收光谱法测定。随同试样做试剂空白试验。

工作曲线的绘制:吸取2.50mL、5.00mL、10.00mL、15.00mL、20.00mL含金10μg/mL的金标准溶液于50mL容量瓶中,25mL硫脲溶液(10g/L),以水定容;按试样相同条件,用原子吸收光谱法测定。

三、分析结果计算

样品中金的含量按下式计算:

岩石矿物分析

式中:w(Au)为金的质量分数,μg/g;m1为从校准曲线上查得试样溶液中金的质量,μg;m0为从校准曲线上查得试样空白中金的质量,μg;m为称取试样的质量,g。

四、质量表格填写

任务完成后,填写附录一质量表格3、4、7。

任务分析

一、方法原理

试样用王水分解,在约10%(体积分数)王水介质中,金用负载三正辛胺的聚氨酯泡沫塑料来吸附,然后用5g/L硫脲-2%(体积分数)盐酸溶液加热解脱被吸附的金,直接用火焰原子吸收光谱法测定。

二、方法优点

聚氨酯泡沫塑料分离富集金,萃取容量大、选择性好、回收率高(97% 以上)。该法操作简单快速、稳定性好、易于掌握、成本低,适用于大批量生产样品的分析。

三、泡沫塑料分离富集方法简介

泡沫塑料(PF,简称泡塑)属软塑料,为甲苯二异氰酸盐和聚醚或聚酯通过酰胺键交联的共聚物。

泡沫塑料已经广泛应用于贵金属的分离和富集。其分离与富集的机理可能包括表面吸附、吸附、萃取、离子交换、阳离子螯合等。泡塑吸附金属的效能取决于泡塑及金属配离子的类型、性质和配离子在溶液中的形成环境、扩散速度以及吸附方式。泡塑由于含有聚醚氧结构,适宜接受一价和二价的配阴离子,它的吸附行为与阴离子交换树脂的类似,故其吸附具有选择性。Au、Tl等以离子形式存在时,几乎不被泡塑吸附,只有成[MeX4-型配阴离子时才能被吸附。

泡塑主要用于金的吸附分离。不同厂家生产的泡沫塑料的质量、结构和性质有差异,对金的吸附容量也不相同,通常在50~60mg/g之间。泡塑吸附的方式分为动态吸附和静态吸附。静态吸附是将泡塑块投入含金溶液中振荡吸附金。动态吸附是将泡塑做成泡塑柱,金溶液流入柱中进行吸附。王水浓度在(4+96)~(15+85)范围内对吸附无明显影响,当王水浓度低于(2+98)时略有偏低;当王水浓度大于(1+4)时,泡塑发黑。溶液体积在50~200mL对吸附无影响,振荡时间30min可以基本吸附完全。用0.4 g泡塑对20~100μg的金进行吸附,吸附率可达98% 以上。

动态吸附率稍高于静态吸附。泡塑在王水(1+9 )介质中吸附金,吸附率可达99%以上,其吸附流速可在较大范围内变化,以小于10mL/min为宜。

将萃取剂或螯合剂负载在泡塑上制备得到的负载泡塑兼有萃取和泡塑吸附两种功能,因而对金具有更大的富集能力。负载泡塑的吸附性质取决于负载在泡塑上萃取剂的种类和性质。目前,在金的分析测定中应用最广泛的载体泡塑有:磷酸三丁酯(TBP)泡塑、三正辛胺泡塑、双硫腙泡塑、甲基异丁酮泡塑、二正辛基亚砜泡塑、二苯硫脲泡塑、三苯基膦泡塑、酰胺泡塑以及将活性炭和泡沫塑料两种富集分离方法相结合而制备的充炭泡塑。其中,以二苯硫泡塑、三正辛胺泡塑、二正辛基亚砜泡塑、双硫腙泡塑富集金的性能较好。

吸附完后,需要对金进行解吸,通常解吸有以下一些方法:

1.灰化灼烧法

将吸附金的泡沫塑料用滤纸包好,置于30mL瓷坩埚中灰化、灼烧。取出冷却后,加2滴氯化钾溶液(200g/L)、3mL王水,在水浴上蒸干。然后再加入10滴浓盐酸,再次蒸干以除去硝酸。然后用光度法或原子吸收光谱法测定。

2.硫脲解吸法

当吸附金的泡沫塑料浸泡于硫脲热溶液中,此时硫脲将Au(Ⅲ)还原为Au(Ⅰ),并形成Au(Ⅰ)硫脲配合物,其反应式为:

R-AuCl4+3SC(NH22+H2O→Au2SC(NH22+RCl+2HCl+OC(NH22

故金离子即能从泡沫塑料上被洗脱。硫脲解吸金的条件是:酸度以中性溶液或小于0.5mol/L盐酸溶液为好。当盐酸浓度大于0.5mol/L时,容易析出单体硫而使结果偏低,从反应式可以看出,盐酸的存在显然对解吸是不利的。在常温下,硫脲解吸金的能力较低,4 h不能使金解吸完全,而在沸水浴中保温20min 即可使金解吸完全,回收率可达95% 以上。保温时间在20~90min不影响结果。硫脲的浓度为10~50g/L,通常采用20~30g/L。该法操作简单快速,成本较低。适用于原子吸收光谱直接测定。

3.硝酸-氯酸钾(HNO3-KClO3)分解法

泡沫塑料能够被氧化性无机酸和氧化剂所分解。采用HNO3、H2SO4-KMnO4、HNO3-H2O2、HNO3-HClO4、HNO3-KClO3等分解泡沫塑料试验表明,其中以HNO3-KClO3分解效果最佳。在HNO3-KClO3的作用下,泡沫塑料很快变成棕黑色块状体,软化后而溶解,并析出黄色油脂状物质浮在溶液表面。加热则发生剧烈的反应而放出大量的NO2气体。对于0.2~0.3 g泡沫塑料,硝酸用量在8mL以上,氯酸钾在0.05 g以上,足使泡沫塑料分解完全,最后得到黄色清亮的溶液。

4.甲基异丁基酮(MIBK)解吸法

MIBK是金的有效萃取剂。利用MIBK的萃取性能可以将泡沫塑料吸附的金解吸。利用20mL MIBK,剧烈振荡2min,金的回收率可达95%~100%。

四、铅试金法富集矿石中的金

经典的火法试金-铅试金法应用于金和银富集已有悠久历史,方法也比较完善。20世纪初开始尝试用经典的铅试金法来富集样品中的铂族金属。由于铂族金属在自然界中比金、银更为稀少,故富集效果较差。为此50年代末期,相继出现了铜镍试金法、锡试金法、镍锍试金法和锑试金法。火法试金作为可靠的方法被长期广泛采用,这是因为火法试金取样量大,一般取20~40g,有时多至100g以上,这样既减少了称样误差,又使结果具有较好的代表性。同时火试金的富集倍数很大(105倍以上),能将几十克样品中的贵金属富集于几毫克的试金合粒中,而且合粒的成分简单,便于后续测定。但火试金法也有其缺点:需要庞大的设备;又要求在高温下进行操作,劳动强度大,在熔炼过程中产生大量的氧化铅等蒸汽,污染环境。所以分析工作者多年来一直想找到一种新的方法,取而代之。近年来在这方面已有所进展,有的方法可以与火法媲美,但对不同性质的样品适应性不如铅试金。所以铅试金仍被各实验室用于例行分析或用以检查其他方法的分析结果。

铅试金的整个过程,可以分为配料、熔炼、灰吹、分金等几个步骤。不同种类的样品,其配料方法和用量比不一样。根据配料的不同,铅试金又可分为面粉法、铁钉法、硝石法等。面粉法以小麦粉作还原剂。铁钉法以铁钉为还原剂,铁钉还可以作为脱硫剂,用于含硫高的试样。硝石法是以硝酸钾作为氧化剂,用于含大量砷、碲、锑及高硫的试样分解,此法不易掌握,一般不常用。常用的为面粉法,它用面粉把氧化铅还原为铅,使铅和贵金属形成合金,与熔渣分离。

1.配料

在熔炼前要在试样中加入一定量的捕集剂、还原剂和助熔剂等。

(1)捕集剂:铅试金以氧化铅为捕集剂。在熔炼过程中,氧化铅被还原剂还原为金属铅,它能与试样中的贵金属生成合金,一般称“铅扣”,与熔渣分离。

对氧化铅的纯度要求不严,只要是不含贵金属的氧化铅如密陀僧等,就可以采用。

(2)还原剂:加入还原剂是为了使氧化铅还原为铅。可用炭粉、小麦粉、糖类、酒石酸、铁钉(铁粉)、硫化物等,国内多采用小麦粉。

(3)助熔剂:常采用的助熔剂有玻璃粉、碳酸钠、氧化钙、硼酸、硼砂、二氧化硅等。根据样品的成分,加入不同量的这些助熔剂,可降低熔炼温度,使熔渣的流动性比较好,铅扣和熔渣容易分离。

配料是铅试金的一个关键步骤,配料不恰当会使铅试金失败。配料是根据试样的种类,按一定比例称取捕集剂、还原剂、助熔剂的细粉和试样混合均匀。各实验室的配料比例不完全相同,仅略有差异。

试样和各种试剂应当混合均匀,使熔炼过程还原出来的金属铅珠能均匀地分布在试样中,发挥溶解贵金属的最大效能。混匀的方法有下列四种:

(1)试样和各种试剂放在试金坩埚中,用金属匙或刮刀搅拌均匀;

(2)在玻璃纸上来回翻滚混合均匀,连纸一起放入试金坩埚中。把玻璃纸的还原力也计算进去,少加些小麦粉等;

(3)把试样和各种试剂称于一个广口瓶中,加盖摇匀,然后倒入试金坩埚中;

(4)将试样和各种试剂称于重1g,长、宽各30cm的聚乙烯塑料袋中,缚紧袋口,摇动5min,即可混匀。然后连塑料袋放入试金坩埚中。配料时应把塑料袋的还原力计算进去,减少还原剂的用量。

2.熔炼

将盛有混合料的坩埚放在试金炉中,加热。于是,氧化铅还原为金属铅;它捕集试样中的贵金属后,凝聚下降到坩埚底部,形成铅扣。这个过程称为熔炼。熔炼过程应控制形成的铅扣的大小和造渣情况,并防止贵金属挥发损失。

常用的试金炉有柴油炉、焦炭炉和电炉三种,以电炉较为方便。

试样和各种试剂的总体积不要超过坩埚容积的四分之三,根据配料多少可以采用不同型号的坩埚。在坩埚中的混合料上面覆盖一层食盐或硼玻璃粉,以防止爆溅和贵金属的挥发,并防止氧化铅侵蚀坩埚。坩埚放进试金炉后,应慢慢升高温度,以防水分和二氧化碳等气体迅速逸出,造成样品的损失。升温到600~700℃后,保持30~40min,使加入的还原剂及试样中的某些还原性组分与氧化铅作用生成金属铅,铅溶解贵金属形成合质金。然后升温至800~900℃,坩埚中的物料开始熔融,渐渐能流动。反应中产生的二氧化碳等气体逸出时,对熔融物产生搅拌作用,促使铅更好地起捕集和凝聚作用。铅合金的密度大于熔渣,逐渐下降到坩埚底部。最后升温到1100~1200℃,保持10~20min,使熔渣与铅合金分离完全。取出坩埚,倒入干燥的铁铸型中。当温度降到700~800℃时,用铁筷挑起熔渣,观察造渣情况,以便改进配料比。若造渣酸性过强,则流动性较差,影响铅的沉降;若碱性过强,则对坩埚侵蚀严重,可能引起坩埚穿孔,造成返工。

熔融体冷却后,从铁铸型中倒出,将铅扣上面的熔渣弃去,把铅扣锤打成正方体。所得铅扣量最好在25~30g之间,以免贵金属残存在熔渣中。如铅扣过大(大于40g)或过小(小于15g),应当返工。铅扣过大,说明配料时加的还原剂太多;铅扣太小,说明加入的还原剂太少。所以重做时应当适当地减少或增加还原剂的用量。根据还原剂的还原力,计算出应补加或减少多少还原剂。

还原剂还原力的计算方法:若所用还原剂为纯碳粉,它和氧化铅在熔炼过程发生下列反应:

2PbO+C→2Pb+CO2

由反应式可以计算出1 g碳能还原氧化铅生成34 g铅。

假设用蔗糖作还原剂,反应如下:

24PbO+C12H22O11→24Pb+12CO2+11H2O

根据反应式可计算出1 g蔗糖能还原氧化铅生成14.0 g铅。试金工作者常称:蔗糖的还原力为14.0 g;碳的还原力为34 g;小麦粉的还原力为10~12 g;粗酒石酸的还原力为8~12 g等。

试样的组成是复杂的,有的具有氧化能力,有的具有还原能力。有还原能力的试样应当少加还原剂;有氧化能力的试样应当多加还原剂。例如含有硫化物的试样,应当少加还原剂,因为硫化物能作用如下:

3PbO+ZnS→ZnO+SO2+3Pb

遇到陌生的样品,难以确定配料比时,可以通过化验测定各种元素的含量,或通过物相分析测定出主要矿物组分的含量,也可以进行试样的氧化力或还原力的试验,以决定配料的组成和比例。

锤击铅扣时,如果发现铅扣脆而硬,这就表示铅扣中含有铜、砷或锑等。遇到这种情况,需要少称样,改用硝酸钾配料,重新熔炼。

矿石和团岩矿物的主要造渣成分为:SiO2、FeO、CaO、MgO、K2O、Na2O、Al2O3、MnO、CuO、PbO等。这些氧化物中,除了很少的氧化物能单独在试金炉温度下熔融外,大多数不熔,因而需要加入助熔剂。若为酸性氧化矿石应当加入碱性助熔剂;碱性氧化矿石则应加入酸性助熔剂,硫化物样品可加铁钉或铁粉助熔。

3.灰吹

灰吹的作用是将铅扣中的铅与贵金属分离。铅在灰吹过程中,被氧化为氧化铅,然后被灰皿吸收;而贵金属不被氧化,呈圆球体留在灰皿上,与铅分离。

灰皿是由骨灰和水泥加水捣和在压皿机上压制而成的。含骨灰多的灰皿吸收氧化铅的性能较好,但灰皿成型较困难。应由具体试验确定水泥和骨灰的比例。灰皿为多孔性、耐高温、耐腐蚀的浅皿,重约40~50g,使用前,将清洁的灰皿放在1000℃以上的高温炉中,预热10~20min,以驱除灰皿中的水分和气体。加热后,如发现灰皿有裂缝,应当弃去不用。降温后,将铅扣放于灰皿中央,加热至675℃,铅扣熔融显出银一样的光泽。微微打开炉门(注意:不要大开炉门,以防冷空气直接吹到灰皿上,使铅的氧化作用太激烈,发生爆溅现象)。这时铅被氧化成氧化铅,氧化铅逐渐由铅扣表面脱落下来,被灰皿吸收。铜、镍等杂质被氧化为氧化铜和氧化镍等,对灰皿也有湿润作用,并渗透到灰皿中。

灰吹温度不宜太高,应控制在800~850℃,使铅恰好保持在熔融状态。若温度过低,氧化铅与铅扣不易分离。氧化铅将铅扣包住,可使铅立即凝固,这种现象叫作“冻结”。凝固后再进行加温灰吹,会使贵金属损失加大。合适的温度能使氧化铅挥发至灰皿边沿上,出现羽毛状的结晶;若羽毛状氧化铅结晶出现在灰皿表面上,则说明温度太低。

微量的杂质如铜、铁、锌、钴、镍等,部分转变为氧化物被灰皿吸收,还有部分挥发掉。铅也是如此,大部分成为氧化铅被灰皿吸收,小部分挥发掉。贵金属大都不被氧化。例如金、银、铂、钯等,它们的内聚力较强,凝集成球状,不被灰皿吸收,也不挥发。在铅扣中的铅几乎全部消失后,可以看到球面上覆盖着一个彩虹镜面(或称辉光点)。随后这个彩虹镜面消失,圆球变为银灰色。将炉门关闭2min,进一步除去微量残余的铅后,再取出灰皿冷却。若不经过2min的除铅过程,则在取出灰皿时,因微量的余铅激烈氧化发生闪光,会造成贵金属的损失。

炉温过高也会造成贵金属的损失。虽然金、银、铂、钯等挥发甚微,但在高温下,它们会部分地被氧化而随氧化铅渗入灰皿中。灰吹过程温度愈高,金、银、铂、钯的损失愈大,所以应当严格控制温度在800~850℃。

4.分金与称量

分金是指将火法试金得到的金属合粒中的金和银分离的过程,它适用于金和银的重量法测定。若所得金银合粒中只有金和银,利用银溶液溶于热稀硝酸而金不溶的特性,将金和银分开。

分金用的硝酸不能含有盐酸和氯气等氧化剂。

5.铅试金中铂族元素的行为

铂族元素在铅试金中表现的行为很复杂,如钌与锇在熔炼过程及灰吹过程容易被氧化成四氧化物而挥发,所以用铅试金法测定钌和锇是困难的。

铱在铅试金的熔炼过程中,不与铅生成合金,而是悬浮在熔融的铅中。所以当铅扣与熔渣分离时,铱的损失很严重。在灰吹过程中,铑不溶于银,氧化损失严重。因此,铱、铑采用铅试金分离富集,是不合适的。

铂、钯在铅试金中的行为与金相似,在熔炼过程溶于铅,在灰吹过程溶于银,在熔炼和灰吹过程都损失甚微。只有含镍的样品使铂、钯损失严重,可以改用锍试金及锑试金进行分离和富集。

6.金与银、铂、钯的分离

若试祥中有金、银、铂、钯,则进行铅试金时,灰吹后得到的合粒为灰色。含铂、钯量较大时,在灰吹过程中,铅未被完全氧化并被灰皿吸收之前,熔珠可能发生“凝固”,得到的金属合粒表面粗糙。

金属合粒中的银比铂、钯多10倍以上时,须用稀硝酸分金多次。铂、钯可以随银完全溶于酸而与金分离。将残留的金洗涤、烘干、称量,得到金的测定结果。

分离金以后的酸性溶液,加热蒸发除酸,通入硫化氢将银沉淀。硫化银可以将铂、钯等硫化物一起沉淀下来。将沉淀用薄铅片包裹起来,再进行灰吹。得到的金属合粒用浓硫酸加热处理,银溶而铂、钯不溶,因此得以分离。

也可以用王水溶解上述硫化物。加入氨水,若有不溶残渣,过滤除去。将滤液蒸干,加水溶解后,加入饱和氯化钾酒精溶液,静置,使铂形成K2[PtCl6]沉淀,用恒重的玻璃砂芯漏斗过滤。用80% 酒精洗涤后,放在恒温箱中干燥,然后称重。这个方法只适用于含铂高的样品。银、铂、钯也可以在同一溶液中用原子吸收分光光度法或发射光谱分析法进行测定。

7.铅试金中常见矿石配料

铅试金中常见矿石配料见表7-2。

表7-2 铅试金中常见矿石配料表

续表

8.提高试金结果准确度的几项要素

试金分析的全过程有繁杂的手工操作,看起来似乎是个粗糙的过程,但实际上操作中的每一步都必须认真仔细。为提高分析结果的准确度,除了按操作规程认真操作外,还必须从下述几个方面着手并尽力实现之,方可达到目的。

(1)灰皿材料及制作。灰皿材料宜使用动物骨灰、水泥或镁砂。使用500 号水泥加10%~15% 的水压制成水泥皿,自然干燥后使用,由于水泥皿的空隙较粗大,灰吹时的贵金属损失较大,合粒与水泥皿亦易黏结,故分析误差较大,一般只是在骨灰缺乏时用于厂内部周转料的分析。使用动物骨灰,最好是牛羊骨烧成骨灰,然后碾成0.175 mm以下,加10%~15% 的水压制成骨灰皿,自然干燥3 个月后使用。在灰吹前先将灰皿放入马弗炉内于900℃左右烧20min以除去可能存在的有机物。

由于在灰吹过程中氧化铅及贱金属氧化物除少量进入空气挥发外,绝大部分要被灰皿吸收。灰皿对金、银也有一些吸收,即所谓金、银损失。因此,不言而喻,灰皿制作时的压力差异必然造成灰皿空隙的差异,从而造成金的灰吹损失的差异,增大了分析误差。这就要求同一批材料来源的骨灰粉要用相同的压力加工;在人力加工的条件下,同一盒灰皿要由同一个人加工;在灰皿将要用完的情况下,不要在不同盒的灰皿中挑选,以免造成分析误差的扩大。更不能将不同来源的骨灰材料灰皿混批使用。

(2)火试金对马弗炉的通风要求及补偿措施。灰吹过程实际上是样品中的贱金属和铅在高温下的氧化过程,因此要求灰皿中熔融的物料与空气有均匀的接触机会,以保证氧化速度的一致,最理想的是铅扣同时熔化,以同样的速度灰吹,同时完成即同时达到辉光点。这就要求马弗炉有合适的进出气孔道。由于一般使用的马弗炉不可能是理想的,除在设计制作时应进行改进外,应考虑到炉内不同位置接触空气的差异和温度差异,对不同区域的样品应使用相应的标准进行补正,其原则是尽量使标准能代表样品。

实验指南与安全提示

三正辛胺在酸性溶液中能与某些金属配阴离子进行交换反应,泡沫塑料对一些有机和无机物质具有吸附性能,因此用负载三正辛胺的泡沫塑料更增强了对[AuCl4-1的吸附性能,而且经水多次洗涤不被洗掉,对0.5~1000μg的金,吸附回收率为96%~100%。

本法吸附金的酸度范围较宽,即0.5~6mol/L盐酸或5%~30%(体积分数)王水介质都能定量吸附金;但硝酸浓度太大时,使金的吸附率下降。

在非纯标准的情况下,金的吸附速度随金品位的降低和试样数量的增加而降低,如30g含金0.0xg/t的样品,振荡吸附时间需延长至90min,一般样品振荡吸附30min即可。

在不加酒石酸和氟化钠时,可允许20mg锑,10mg钨,4000mg铁及小于200mg的可溶性二氧化硅存在。加入1 g酒石酸,可消除300mg锑,100mg钨的干扰。加入5 g氟化钠,可允许5000mg铁存在。可溶性二氧化硅需加入4.2 g氟化钠,使之生成氟硅酸钠晶体沉淀而消除干扰。

对含砷量高的试样,焙烧时应从低温开始,逐渐升高温度,至480℃时保持1~2h,使砷挥发,然后再升高温度继续焙烧除硫,否则由于形成低沸点的砷-金合金而挥发,造成金的损失,导致测定结果偏低。

除钨、锑、铁和酸溶性硅酸盐影响吸附和测定外,矿石中大量其他共存元素均无干扰。钨、锑的干扰用加入酒石酸消除,大量铁和一定量酸溶性硅酸盐的干扰可加入氟化钠使之生成氟硅酸钠(Na2SiF6)晶体沉淀而消除。

金标准溶液的保存:Au3+浓度为2.5~25μg/mL 的溶液,盛于玻璃容器中可稳定300 d。金的浓度更低时,可被玻璃器皿吸附。当pH=2 时,吸附金的量最多,玻璃器皿吸附约30%,石英器皿吸附约60%;当pH=2~7 时,滤纸吸附金高达40%,因此,制备金的标准溶液时,不能用滤纸过滤。为了提高[AuCl4-的稳定性,有人建议在金的标准溶液中加入NaCl、KCl和碱土金属的氯化物。

拓展提高

ICP-MS法测定矿样中的金

1.方法原理

试样经800℃灼烧后,王水溶解,以氩等离子体激发,ICP-MS法测定。

2.试剂与设备

硝酸(ρ=1.42g/mL)、盐酸(ρ=1.19g/mL)、铊标准溶液(1mg/mL):国家标准溶液GSB G62070-90。

铊内标工作液:移取铊标准溶液2.5mL于2000mL容量瓶中,加入250mL王水,以水稀释至刻度,混匀,此标准溶液含铊0.25μg/mL。

金标准贮备液:称取1.000 g纯金(纯度大于99.99%,使用前擦去表面氧化层)于250mL烧杯中,加入100mL水,60mL王水,加热分解清亮,冷却,移入1000mL容量瓶中,以水稀释至刻度,混匀。此标准溶液含金1mg/mL。

金标准工作液:移取金标准贮备液2.50mL于100mL容量瓶中,加入1mL王水,以水稀释至刻度,混匀。此标准溶液含金25μg/mL。

标准溶液的配制:移取金标准工作液0.00、1.00、2.00、4.00mL于一系列100mL容量瓶中,加入铊内标工作液 10mL,用水定容,溶液中含金分别为 0.00,2.50,5.00,10.00μg/L。

氩气(>99.99%)。

分析天平:感量0.0001 g。

等离子体质谱仪:ELAN9000。

3.分析步骤

按表称取两份试样,置于75mL蒸发皿中,在800℃灼烧2 h。移入500mL烧杯中,加入20mL盐酸,加热5min,加入50mL王水,加热浓缩体积至10~20mL,取下,冷却,加热分解清亮,冷却,移入200mL容量瓶中,以水稀释至刻度,混匀,按下表分取试液。

表7-3 分取量

移取样品1.00mL加入已预先加5mL铊内标的50mL容量瓶中,用水定容,混匀,将标准溶液和试液依次进行ICP-MS测定。测量元素同位素质量数:Au 197,Tl 205。

阅读全文

与比色法测定金品位的方法步骤相关的资料

热点内容
怎样快速练习发声方法 浏览:606
有线耳机怎么连接电脑的方法 浏览:513
辨别品种的最佳方法 浏览:204
实验室内常用灭火方法有 浏览:296
止病的最佳方法 浏览:197
袖子减针方法视频教程 浏览:547
去屑简单方法 浏览:144
快速变瘦的方法女生做瑜珈 浏览:522
白内障保守治疗方法 浏览:86
力量训练分析方法 浏览:530
总统奶酪的食用方法 浏览:194
如何去面部螨虫的有效方法 浏览:644
数据分析的实现方法 浏览:455
如何保持平衡的方法 浏览:58
燃气插卡使用方法 浏览:742
撤桶下楼的最佳方法 浏览:726
今后如何防止写错别字的方法 浏览:91
霉菌性鼓膜炎治疗方法 浏览:757
家长嫌老师没有方法怎么办 浏览:275
音乐教法都有哪些方法 浏览:626