㈠ 如何测量经纬度
1、测量经纬度的方法如下:
(1)先算两分日
比如在中国某地,杆影最短时是中午13点20分,且杆长与影长之比为1,则可知该地是北纬45°(tgα=1),东经100°(从120°里1小时减15°,4分钟减1°)杆长与影长之比需查表求α,这里用了特殊角。
(2)再算两至日经度的算法不变 纬度在北半球冬至α+23.5°,夏至α-23.5°在任意一天加减修正值即可。
(3)修正值算法:就是距两分或两至日的天数差乘以94/365. 比如2013年2月17日,2013年3月22日春分差33天,即太阳直射点在南纬
33×94/365=8.5°
所以今天正午时得到的纬度是(arctgα+8.5)°
tgα= 杆长/影长
㈡ 怎样测量地球的经度和纬度
选定南北两极,在球面上连接这2个点,再竖着将球面等分为24份(每份15°),在横的方向上选周长最大的地方作为赤道,向上向下分别等分3份,标上度数即可。
在地图上,通过地球表面上任何一点,都能画出一条经线和一条与经线相垂直的纬线。这样,就能画出无数条经线和纬线来。
把通过英国格林威治天文台原址的那条经线,叫做0°经线,也叫本初子午线。从0°经线向东叫东经;向西叫西经。由于地球是个球体,所以东、西经各有180°。东经180°和西经180°是在同一条经线上,那就是180°经线。
(2)地球三维测量方法扩展阅读:
纬线和经线一样是人类为度量方便而假设出来的辅助线,定义为地球表面某点随地球自转所形成的轨迹。任何一根纬线都是接近正圆的椭圆形而且两两平行。纬线的长度是赤道的周长乘以纬线的纬度的余弦,所以赤道最长,离赤道越远的纬线,周长越短,到了两极就缩为零。赤道以北称北纬,用“N”表示。赤道以南称南纬,用“S”表示。
地球仪上的经线和纬线共同组成了经纬网,地球上不同地点的位置,可以用相应的经纬度数来表示,如北京的坐标是(40°N,116°E)。
㈢ 全站仪三维坐标测量的具体操作步骤
不同型号的全站仪,其具体操作方法会有较大的差异。下面简要介绍全站仪的基本操作与使用方法。
1.全站仪的基本操作与使用方法
1)水平角测量
(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。
(2)设置A方向的水平度盘读数为0°00′00″。
(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。
2)距离测量
(1)设置棱镜常数
测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。
(2)设置大气改正值或气温、气压值
光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。
(3)量仪器高、棱镜高并输入全站仪。
(4)距离测量
照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。
全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。
3)坐标测量
(1)设定测站点度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。
(3)设置棱镜常数。
(4)设置大气改正值或气温、气压值。
(5)量仪器高、棱镜高并输入全站仪。
(6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。 参考网络知道: http://..com/question/40106767.html
㈣ 三维测量的三维测量方式
1)将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。
2)三维激光扫描仪是通过发射激光来扫描被测物,以获取被测物体表面的三维坐标。三维激光扫描技术又被称为实景复制技术,具有高效率、高精度的测量优势。有人说,三维激光扫描是继GPS技术以来测绘领域的又一次技术革命。三维激光扫描仪被广泛应用于结构测量、建筑测量、船舶制造、铁路以及工程的建设等领域,近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪和机载三维激光雷达。
3) 拍照式三维扫描仪采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。这种测量原理,使得对物体进行照相测量成为可能。所谓拍照测量,就是类似于照相机对视野内的物体进行照相,不同的是照相机摄取的是物体的二维图象,而研制的测量仪获得的是物体的三维信息。
㈤ 电影《金蝉脱壳》里的六分仪怎么实现测量地球维度的
六分仪,测量天体距离海水平面的角度。然后用时间记录,间隔多少时间,天体新的角度。利用公式去计算你所处的经纬度,作为航海定位用的。
用六分仪,有两个像,调整其中的一个到海平面上,然后看度数,就是这个天体对海平面的夹角,也可以测量两个天体的夹角,原理同上。
用六分仪测量地球维度,是根据天体对海平面的夹角,带上时间,根据星图来推算,最简单的方法是测量北极星对海平面的夹角,这个度数就是你所处的北纬。当然这只是夜里北半球的处理方法。对于任意天体,比如用太阳,这样你白天可以推算出。夜里你用星星,当然你的认识这个星星,全天88个星座,你需要很了解其分布。算出这个星星距离北极的角度,然后测量这个星星对海面的角度,推算出,最笨的办法就是查书上的公式。
现在定位用GPS , 但是我国海军必须要会使用六分仪来算位置,因为GPS 可以提供给你错误的信号,使你不能找到正确位置。
㈥ 三维测量一般方式有哪些
据中国仪器超市网站介绍说三维检测是集光、机、电和计算机技术于一体的高新技术,主要用于对物体空间外形和结构进行扫描,以获得物体表面的空间坐标。它的重要意义在于能够将实物的立体信息转换为计算机能直接处理的数字信号,为实物数字化提供了相当方便快捷的手段。常见的三维物体形状检测方法可以分为接触式和非接触式两大类,而检测系统与物体的作用不外乎光、声、机、电等方式。三维测量的优势:直接获取观测点三维绝对位置,不需要通视,有利于在施工现场的测量控制;实时计算并显示三维位移;不受天气影响,可全天候、24小时连续进行高采样率(10Hz)观测;对原有测量控制系统进行独立检核。
㈦ 三维测量技术的方法及应用
光学主动式三维测量
目前,主动式光学三维测量测量技术已广泛用于工业检测、反求工程、生物医学、机器视觉等领域。例如,复杂的叶轮和叶片的面形检测,汽车车身的检测,人类口腔牙型测量,整形外科效果评价,用于制鞋CAD的鞋楦三维数据采集,各种实物模型的三维信息记录与仿形等。三维高速度、高精度测量技术将随着测量方法的完善和信息获取与处理技术的改进而进一步发展,在新的更加广阔的研究和应用领域中发挥重要作用。
主动式光学非接触测量技术大体上可分为飞行时间法、主动三角法、莫尔轮廓术、投影结构光法、自动聚焦法、离焦法、全息干涉测量法、相移测量法等。以下对几种主要的方法进行以下简单介绍。
3.2.1.飞行时间法
飞行时间法是基于三维面形对结构光束产生的时间调制,一般采用激光,通过测量光波的飞行时间来获得距离信息,结合附加的扫描装置使光脉冲扫描整个待测对象就可以得到三维数据。飞行时间法以对信号检测的时间分辨率来换取距离测量精度,要得到高的测量精度,测量系统必须要有极高的时间分辨率,常用于大尺度远距离的测量。
3.2.2.干涉法
干涉测量是将一束相干光通过分光系统分成测量光和参考光,利用测量光波与参考光波的相干叠加来确定两束光之间的相位差,从而获得物体表面的深度信息。这种方法测量精度高,但测量范围受到光波波长的限制,只能测量微观表面的形貌和微小位移,不适于大尺度物体的检测。
3.2.3.主动三角法
光学三角法是最常用的一种光学三维测量技术,以传统的三角测量为基础,通过待测点相对于光学基准线偏移产生的角度变化计算该点的深度信息。根据具体照明方式的不同,光学三角法可分为两大类:被动三角法和基于结构光的主动三角法。双目视觉是典型的被动三维测量技术,它的优点在于其适应性强,可以在多种条件下灵活地测量物体的立体信息,缺点是需要大量的相关匹配运算以及较为复杂的空间几何参数的校准等问题,测量精度低,计算量较大,不适于精密计量,常用于三维目标的识别、理解以及位形分析等场合,在航空领域应用较多。主动三维测量技术根据三维面形对于结构光场的调制方式不同,可分为时间调制和空间调制两大类。飞行时间法是典型的时间调制方法,激光逐点扫描法、光切法和光栅投射法是典型的空间调制方法。
3.2.4.相移测量法
相移测量法是一种重要的三维测量方法,它采用正弦光栅投影和相移技术,投影在物体上的光栅,根据物体的高度而产生变形,变形的光栅图像叫做条纹图,它包含了三维信息。
相移法是一种在时间轴上的逐点运算,不会造成全面影响,计算量少。另外,这种方法具有一定抗静态噪声的能力。缺点是不能消除条纹中高频噪声引起的误差。在传统相移系统中,精确移动光栅的需要增加了系统的复杂性。而在数字相移系统中,用软件控制精确地实现相位移动。某些应用场合不允许测量多幅图像,但只要没有以上限制,相移法仍然是首选方案。