① 解一元二次方程的方法及步骤
解一元二次的方法,往往是有配方法和公式法。
那配方法的话,我们直接先将二次项配方程,得到一个比较合适的二次方,然后进行解方程。
公式法的话,直接使用公式进行计算。
② 用配方法解一元二次方程的基本步骤
③ 怎么用配方法解一元二次方程
ax²+bx+c=0
x²+bx/a+c/a=0
x²+bx/a=-c/a
x²+bx/a+[b/(2a)]²=b²/(4a²)-c/a
[x+b/(2a)]²=b²/(4a²)-4ac/(4a²)
x+b/(2a)=±√(b²-4ac)/2a
x=-b/(2a)±√(b²-4ac)/2a
x=[-b±√(b²-4ac)]/2a
④ 一元二次方程配方法怎么配方
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
(4)配方法解一元二次方程步骤扩展阅读:
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)²=x²+ 2xy+y²的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y²= (b/2a)²。
例分解因式:x²-4x-12
解:x²-4x-12=x²-4x+4-4-12
=(x-2)²-16
=(x -6)(x+2)
求抛物线的顶点坐标
【例】求抛物线y=3x²+6x-3的顶点坐标。
解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6
所以这条抛物线的顶点坐标为(-1,-6)
⑤ 配方法解一元二次方程
用配方法解一元二次方程的一般步骤:
1、把原方程化为的形式;
2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;
3、方程两边同时加上一次项系数一半的平方;
4、再把方程左边配成一个完全平方式,右边化为一个常数;
5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。
(5)配方法解一元二次方程步骤扩展阅读
配方法的其他运用:求最值。示例说明如下:
已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。
分析:将y用含x的式子来表示,再代入(x+y)求值。
解:x²+3x+y-3=0<=>y=3-3x-x²。
代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。
由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。
⑥ 配方法解一元二次方程步骤是什么
配方法:将一元二次方程配成(x+m)^2=n的形式,再利用直接开平方法求解的方法。
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(6)配方法解一元二次方程步骤扩展阅读:
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;
③未知数项的最高次数是2。
⑦ 用配方法解一元二次方程,怎么解呢要步骤。急!谢谢
视频没有,但方法可以教你:配方法就是把一元二次方程的左边那一项配成完全平方式,就是
(a-b)²和(a+b)²,这两个式子打开后就是a²-2ab+b²和a²+2ab+b²,其中打开后的这两个式子就叫完全平方式,只要左边配成这样就行了,剩下的就是你正数和负数的运算了,因为外面有平方,所以答案就有两个,一般是一正一负,配方法的秘诀就是这个
⑧ 用配方法解一元二次方程的步骤
你这个是一元二次方程吗??这不是一元一次方程,怎么用配方法