导航:首页 > 安装方法 > 莫塞莱测量方法

莫塞莱测量方法

发布时间:2023-06-02 09:10:47

Ⅰ X射线荧光光谱分析

X射线荧光的激发源使用X射线而不使用电子束,因为使用X射线避免了样品过热的问题。几乎所有的商品X射线荧光光谱仪均采用封闭的X射线管作为初始激发光源。某些较简单的系统可能使用放射性同位素源,而电子激发一般不单独使用在X射线荧光光谱仪中,它仅限于在电子显微镜中X射线荧光分析中使用。

X射线荧光谱仪具有快速,无损,高精度和适用性强的重要性能,对所有的元素能进行快速定量分析。波长色散光谱仪的最新进展已经把元素范围扩展到碳(Z=6)。大部分测量范围内可低到10-6水平的检测限下,精度达千分之几。

一、基本原理

荧光的产生是由于初始X射线光子能量足够大,以致可以在样品中产生电子—空穴,导致二次辐射(荧光)的产生。这种二次辐射是组成样品的元素的特征。用于分离和测量初始X射线激发产生的分立的特征波长的技术,被称为X射线荧光光谱学。X射线荧光光谱学提供了一个用测量其特征X射线辐射波长或能量来确定元素种类的定性分析方法,同时测量辐射的特征谱线的强度,然后把这一强度和元素的浓度联系起来,即可进行给定元素的定量分析。根据莫塞莱定律,只要测出X荧光射线的波长,就可确定某元素的存在,只要测出X荧光射线的强度,就可确定某元素的含量。

二、X射线荧光光谱分析

X射线荧光光谱分析仪的主要部件为:激发源、探测器、高压电源、前置放大器、主放大器、模数转换器。

1.获得X射线荧光光谱的方法

X射线荧光光谱法,即X射线发射光谱法,是一种非破坏性的仪器分析方法。为了区别不同宝玉石的成分,常采用两种X荧光分光技术:

(1)波长色散光谱法:通过分光晶体对不同波长的X荧光进行衍射而达到分光的目的,然后用探测器探测不同波长处的荧光强度。

(2)能量色散光谱法:首先使用探测器接收所有不同能量的X荧光,由探测器转变为电脉冲信号,经前置放大之后用多道脉冲高度分析器进行信号处理,得到不同能量的X荧光光谱。波谱仪使用分光晶体,各元素的谱线进入探测器之前已被分光,探测器每次只能接受某一波长的谱线;而能谱仪使用的探测器和多道脉冲分析器,直接测量不同能量的元素的特征X谱线的能量。图13-4-1为合成碳化硅和钻石X荧光能谱图,由图可见Si的能量峰尖锐,其SiKα能量峰位于1.739 keV,由于C是轻元素( Z=6)因此无论是波谱法,还是能谱法目前都较难检测。

2.X荧光能谱仪的类别

(1)便携式X荧光能谱仪:一般为定性、半定量分析。它是以同位素源为激发源。优点是体积小巧,便于携带,适用于现场分析、野外和大型工件或设备上某零件的元素分析及合金牌号的鉴定;主要缺点是分析精度较差。

图13-4-1 碳化硅和钻石X荧光能谱图

(2)小型管激发X荧光能谱仪:一般仅用于高含量单元素的半定量分析。由于探测器采用正比计数管技术,因此体积较小。优点是价格便宜。

(3)大型X 荧光能谱仪:仪器的稳定性、灵敏度、准确度和重现性都很高,可同时分析Na~U 的各种元素,分析的浓度从100%至10-6级。主要特点是采用管激发和Si(Li)探测器技术。

3.制备样品

对宝玉石样品要进行表面抛光,才可放入仪器中进行直接测量。测量前还应做相应的设备检查。

三、X荧光能谱仪在珠宝首饰检测中的应用

1.贵金属首饰成色检测

市场上已有多种型号的测金仪出售,大多配备放射性同位素源,以正比计数管为探测器。固定的放射性同位素源激发能量的范围较窄,正比计数管的分辨率一般较低。因此,这种组合适合于单元素或多元素样品的定量测试。如使用241Am放射性同位素源,适合于激发能量较高的Au(L系)、Ag(K系)、Pt(L系)、Pd(K系)荧光,可用于贵金属成色分析。为了达到准确定量分析的目的,所有仪器均使用标准样品或标准物质进行校正。

2.宝玉石中主元素的确定

天然不同的宝玉石都具有特定的化学成分和晶体结构,测试出矿物中的主要化学元素对鉴定和区分外观相似的宝玉石是具有重大的意义。

3.宝玉石中微量元素的确定

有许多宝玉石矿物属于一个大家族,这些宝石常具有类似的化学成分,有的所含常量元素含量变化不大,但微量元素含量却有不同,如刚玉有红刚玉和蓝刚玉,即红宝石和蓝宝石,根据X荧光能谱定量或半定量结果可以进行其亚种区分:红宝石含Cr 波谱图上出现铬和铝峰;蓝宝石含Fe和Ti在谱图上出现铝、铁和钛峰。

4.宝石产地、产状的识别

同一种宝石因产出的地质条件即产状、产地不同,宝石内部微量元素或痕量元素的种类及含量会有变化,这些变化有时可以反应其产地、产状信息。使用大型X荧光能谱仪可以区分天然红宝石产地:泰国产红宝石具有高铁含量;缅甸抹谷产红宝石具有高镓含量;缅甸孟宿产红宝石具有高钛含量等特征。使用X荧光能谱仪可以区分海水养殖珍珠与淡水养殖珍珠:海水养殖珍珠锶比锰高,而淡水养殖珍珠却具有锰比锶高。

5.合成宝石的鉴定

天然尖晶石与合成尖晶石具有不同的镁铝含量比值。在合成钻石中经常可检测到含有Ni、Co或Fe等元素。

6.优化处理宝石的鉴定

宝石经优化处理后,可能有外来元素进入而引起化学成分出现异常。使用大型X荧光能谱仪可以测出传统银盐染色黑珍珠中的银。

Ⅱ “质子”是怎样被发现的

1919年,卢瑟福做了用α粒子轰击氮原子核的实验,实验装置如图所示,容器C里放有放射性物质A,从A射出的α粒子射到铝箔F上,适当选取铝箔的厚度,使容器C抽成真空后,α粒子恰好被F吸收而不能透过,在F后面放一荧光屏S,用显微镜册来观察荧光屏上是否出现闪光。通过阀门T往C里通进氮气后,卢瑟福从荧光屏S上观察到了闪光,把氮气换成氧气或二氧化碳,又观察不到闪光,这表明闪光一定是α粒子击中氮核后产生的新粒子透过铝箔引起的。

卢瑟福把这种粒子引进电场和磁场中,根据它在电场和磁场中的偏转,测出了它的质量和电量,确定它就是氢原子核,又叫做质子,通常用符号卢瑟福把这种粒子引进电场和磁场中,根据它在电场和磁场中的偏转,测出了它的质量和电量,确定它就是氢原子核,又叫做质子,通常用符号表示。

(2)莫塞莱测量方法扩展阅读

一、发现人

欧内斯特·卢瑟福(英语:Ernest Rutherford,1st Baron Rutherford of Nelson,1871年8月30日-1937年10月19日)

英国着名物理学家,知名为原子核物理学之父。学术界公认他为继法拉第之后最伟大的实验物理学家。

二、反质子

反质子(英语:antiproton),粒子类型为复合粒子,质子的反粒子,其质量及自旋与质子相同,且寿命也与质子相当,但电荷及磁矩则与质子相反,带有与电子相同的负电荷。与质子相遇时会湮灭,转化为能量。

参考资料来源:网络-质子

Ⅲ 人工核辐射测量方法

12.3.1 X荧光方法

X荧光方法是一种通过测量元素的特征X射线来进行物质成分分析的人工核物探方法。

12.3.1.1 X荧光方法工作原理

(1)特征X射线及其谱结构

X射线是一种低能电磁辐射,具有波、粒二象性,它的产生过程却与其他电磁辐射(γ射线,轫致辐射等)不同。高能粒子(电子、质子、软γ射线或X射线)与靶物质原子发生碰撞时,从原子的某一壳层逐出一个电子,于是在该壳层出现一个电子空位。这时原子处于激发态,其外层能量较高的电子就发生跃迁以充填电子空位,并将多余的能量(两壳层的能量差)以X射线的形式释放出来。

能引起内层电子跃迁的入射粒子的最低能量称为吸收限。我们可以将原子的K、L、M等各层的吸收限表示为Kab、Lab、Mab等。当激发能量E0>Kab时,K层出现电子空位,L、M或N层电子充填该空位,这时释放的X射线称为K系X射线;当E0>Lab时,L层出现电子空位,M、N层电子充填该空位,释放出的X射线称为L系X射线,等等。由于每个电子壳层存在若干亚层(电子轨道),使得X射线更趋复杂化。例如K系X射线又分为:L层各亚层电子跃到K层形成的Kα1、Kα2线,M、N层各亚层电子跃迁到K层时形成的Kβ1、Kβ2、Kβ3线等,且它们之间的X射线照射量率差别很大。其余各系亦是如此。

每种元素的原子能级是特定的,因此每种元素都有一套确定能量的X射线谱。该线谱成为表征这一元素存在的谱线,所以又称这些谱线为该元素的特征X射线。

(2)荧光产额

我们知道,原子在退激时也可以放出俄歇电子而不释放特征X射线,这就造成了特征X射线放射几率的减少。特征X射线发射的几率称为荧光产额,用ω表示。ω等于某壳层伴有特征X辐射的电离数I与该壳层总电离数n之比,即

勘查技术工程学

图12-13 荧光产额与原子序数的关系

图12-13给出了不同元素K、L、M系的荧光产额曲线。不难看出,荧光产额主要依赖于元素的原子序数。重元素的荧光产额高,容易分析。轻元素的荧光产额低,给测量带来了很大的困难,因而测量精度低。将各线系加以比较,可见K系的荧光产额最高,因此实际工作中应尽量利用K系谱线。

(3)莫塞莱定律

1913年,莫塞莱发现,元素特征X射线频率ν的平方根与靶物质的原子序数Z存在以下线性关系

勘查技术工程学

式中a、b是与谱线特征有关的常数。上式也可以写成

勘查技术工程学

式中EX是特征X射线的能量,h为普朗克常数。由上式可见,只要测定出某一能量(或频率)的特征X射线,就能确定相应的化学元素。这一特定能量X射线的照射量率的大小就反映了该元素在物质中的含量。

12.3.1.2 X荧光的激发

(1)激发方式

要激发待测元素原子的X荧光,首要的问题是必须使其原子内层电子轨道上形成空位,这就要求为电子提供大于结合能的能量,以使该电子脱离原子的束缚,成为自由电子。完成这一过程的主要方式如下。

1)电子激发。用高电压下产生的高速电子或核衰变产生的β射线轰击靶材料。这种方式除获得靶物质的特征X射线外,还存在轫致辐射产生的连续谱,造成很强的本底,给测量带来了不便。

2)带正电粒子激发。带正电粒子来自静电加速器产生的高能质子、氘核或其他粒子,以及核衰变产生的α射线。常用的是质子激发,特点是本底极低,这是因为重带电粒子的轫致辐射可忽略不计,因而X荧光分析可获得很低的检出限(测量装置能发现的最小照射量率变化值)。重带电粒子射程很短,所以对带正电粒子激发的X荧光的分析实际上是一种表面分析方法。

3)电磁辐射激发。γ射线、X射线及轫致辐射都可与核产生光电效应,从而使内层电子轨道形成空位,这是最常用的激发方式。

(2)激发源

激发源的种类很多。X射线管可用于电子激发或电磁辐射激发,静电加速器可用于带正电粒子激发或电磁辐射激发,野外工作中常用放射性核素作激发源。例如241Am,57Co是软γ射线源,55Fe、109Cd、238Pu、153Gd是X射线源等。用它们可现场测定元素的种类和含量。

12.3.1.3 X射线在物质中的衰减

X射线和γ射线一样,与物质作用会产生光电效应、康普频散射和电子对效应。单色窄束X射线在物质中的衰减服从指数定律

勘查技术工程学

式中I0和I分别为通过该物质前、后X射线的计数率;μm为质量吸收系数,μm=μ/ρ,μ为吸收系数,ρ为物质密度;dm为面密度(或质量厚度),dm=ρd,d为物质层厚度。

物质透过X射线的能力用透过率η表示,即

勘查技术工程学

显然,透过率η取决于物质的质量吸收系数μm和面密度dm。质量吸收系数随入射X射线能量减小而增长,且其变化是不连续的。例如,当入射X射线能量E0小于吸收限Kab(或Lab)时,μm较小,因而透过率η大;当E0大于Kab(或Lab)时,能激发K层(或L层)电子产生光电效应,μm突然增大,η急剧减小,于是出现图12-16中透过率η在吸收限Kab(或Lab)处突变的现象。利用这一现象可以实现对能量的甄别。

此外,调节物质层厚度d,也可以调整物质的透过率η,使透过率曲线上、下移动。

12.3.1.4 现场X荧光测量方法

X荧光分析所使用的仪器称为X射线荧光仪,其工作原理是,用激发发源产生的带电粒子与靶物质原子作用,使之放出X射线,通过测定特征X射线的能量和强度,就能确定放射性核素所属元素的名称及含量。

X荧光分析可在室内,也可在野外进行。随着X荧光仪器设备及工作方法日臻完善,现场X荧光测量已成为快速评价和验证矿化异常的有效方法。

现场X荧光测量工作主要包括以下内容:调整和检查仪器工作状态,布置测网,测试工作地区岩矿样品,建立工作曲线及室内资料整理等。

测线、测网要依据矿化程度布置,测线应布置在岩、矿露头比较平整的地段,对均匀矿体要加密测线、测点。

现场X荧光测量主要是用闪烁计数器测定 X射线,但它往往不能将 X 射线能量相近的元素区分开来。图 12-14 中实线就是铜、铁二元样品的 K 系 X 射线仪器谱。由于铜和铁的 K 系 X 射线能量相近,它们的谱线重叠,无法区分 Fe K和 Cu K的照射量率。为了解决这个问题,可以选用高分辨率的半导体探测器。它需要低温的工作环境,用于现场测量尚有一定困难。为此,可在试样和探测器间安装某种材料制作的滤片(图12-15),使其吸收限能量略大于被测元素特征 X射线的能量,而小于其余干扰辐射的能量,这样就只有被测元素的X射线能通过滤片被探测器探测到,其余辐射全被滤掉,这种方法称为透过片法。

图12-14 闪烁计数器的能量分辨能力

图12-15 一种典型的激发探测装置

当样品成分复杂或做多元素分析时,则要采用平衡滤片法。选择两种材料组成一对滤片,一片叫透过片,另一片叫吸收片,它们都有自己特定的吸收限。如图12-16所示,实线表示透过片 A 对 X 射线的透过率曲线,虚线表示吸收片 B 对 X 射线的透过率曲线。在它们之间由两个吸收限 K abA和 K abB确定的能量间距ΔE,称为能量通带。选择适当的平衡滤片,使待测元素的特征X射线能量位于 K abA和 K abB之间,这时只需分别测量通过每一滤片后的 X射线照射量率,两者之差就是被测元素的照射量率。显然,通带愈窄,滤片的能量分辨本领愈好。

例如,有一个含Fe、Co、Ni、Cu和Zn的样品,激发时五个元素都发射自己的特征X射线,而我们只测量Cu的Kα线,Cu的Kα线的能量为8.047 keV,Co的吸收限Kab为7.709 keV,Ni的Kab为8.331 keV。取Co和Ni制成的滤片,并使能量通带处于7.709~8.331 keV之间,Cu的Kα线正落入其中,而Co、Ni、Zn的K线不是小于就是大于此通带能量范围,所以透过Co片和Ni片的X射线照射量率之差正好是Cu的Kα射线的照射量率。

图12-16 平衡滤片的特性

工作曲线是表示样品中待测元素含量与特征X射线照射量率之间关系的曲线(图12-17)。在野外现场获得特征X射线照射量率后,即可从工作曲线上查出相应的元素含量。

现场绘制工作曲线有刻槽取样和岩心测量两种方法。刻槽取样法是在有代表性的矿化地段,取5~10处不同含量的露头,每处长约50~100 cm,均匀布置10~20个测点进行X荧光测量,求出平均照射量率差值Δ或平均计数率差值(或平均照射量率或平均计数率)。然后刻

图12-17 工作曲线示意图

槽取样,用化学分析方法获得该处元素平均含量。最后,根据或(或或)与元素含量的关系绘制散点图,用回归分析方法找出二者之间的函数关系,并绘制工作曲线。岩心测量法与刻槽取样法相同,只是测量的对象是岩心而不是露头。

必须指出,待测样品中各元素间的相互影响、样品粒度不均匀、表面不平整等,都会对X荧光测量产生影响,使测量结果出现误差,这就是基体效应。校正基体效应的方法很多,读者可参看有关书籍,不再赘述。

X荧光测量数据经整理后,可绘制X射线荧光照射量率(或计数率)剖面图、剖面平面图、等值线平面图,以及元素含量的剖面及平面图件。

12.3.2 中子活化法

利用核反应可以把许多稳定的核素变成放射

性核素,这个过程称为活化。我们知道,中子引起的核反应可使原子核活化,这就是中子活化。具体地说,中子活化是利用具有一定能量的中子去轰击待测岩石样品,然后测定由核反应生成的放射性核素的核辐射特性(半衰期、射线能量及照射量率),从而实现对样品中所含核素种类和含量的定性和定量分析。

例如,用中子活化法测定金的核反应式为

勘查技术工程学

或记为197Au(n,γ)198Au。经此反应,稳定核素197Au转变为放射性核素198Au,其半衰期为2.696d,放出的一条主要γ射线的能量为411.8 keV,活化核反应截面为98.8×10-28m2。因此可用锗(锂)探测器测量198Au的γ射线照射量率,从而确定样品中是否含金,以及金的含量。元素分析检出限(即与检出限对应的元素含量)可达0.04×10-9

12.3.2.1 活化分析方程式

设某靶核在活化反应时间(t=0)前的原子核数为N0,则活化反应中放射性核素原子核的生成率为

勘查技术工程学

式中f为中子的通量密度,f=nv;n为中子密度;v为中子速度;σ为靶核对中子的活化反应截面。

新生成的放射性核素同时发生衰变,其衰变率为

勘查技术工程学

式中N为t时刻新生成的放射性核素的原子核数。于是,放射性核素原子核的净增长率为

勘查技术工程学

活化过程中,虽然 N0 在减少,但 N0≫N,故 N0 可视为常数。对(12.3-8)式为一阶非齐次线性微分方程,解之得

勘查技术工程学

由(11.8-1)式和(11.2-5)式可知,放射性核素的活度为

勘查技术工程学

将(12.3-9)式代入,得

勘查技术工程学

根据半衰期与衰变常数的关系,(12.3-11)式可写成

勘查技术工程学

图12-18 放射性子核的积累衰变曲线

(12.3-12)式表明,用中子束活化某靶核时,照射t时刻得到的放射性核素的活度与fσN0成正比,与照射时间t呈指数关系。图12-18为放射性子核的积累衰变曲线,当照射时间为5倍半衰期时,活度A已接近饱和。

活化分析中,总是在停止照射后“冷却”(即衰变)一定时间t′才进行测量。这时放射性核素的活度A′为

勘查技术工程学

靶核数N0可用下式表示

勘查技术工程学

式中:NA为阿伏伽德罗常数,NA=6.022×1023mol-1;θ为放射性核素丰度;m为靶元素的质量;M为靶元素的相对原子量,于是

勘查技术工程学

(12.3-14)式就是中子活化分析最基本的方程式。

实际工作中,由于σ和f不易准确测定,放射性活度A′的测量又比较麻烦,所以中子活化分析求待测靶元素的质量很少用上述绝对测量法,而是用相对测量法。相对测量法是将已知待测元素含量的标准参考物质与未知样品在相同条件下进行照射和测量,由(12.3-14)式得到

勘查技术工程学

式中:A′和A′分别为样品和标准参考物质的放射性活度;m和m分别为样品和标准参考物质中待测元素的质量。由上两式得到

勘查技术工程学

设γ射线的计数率为I,则它与活度的关系为

勘查技术工程学

式中:Bγ为一次衰变中产生γ光子的几率;εγ为测量系统的探测效率,与被测γ射线能量有关;R为与测量几何条件有关的参数。根据上式,我们还可以得出

勘查技术工程学

式中:I和I分别为样品和标准参考物质中待测元素放出的γ射线的计数率,于是(12.3-15)式变为

勘查技术工程学

设样品和标准参考物质中待测元素的质量分数为w和w,由于

勘查技术工程学

式中:G和G分别为样品和标准参考物质的质量,于是(12.3-18)式变为

勘查技术工程学

这就是相对测量时计算样品中待测元素质量分数的公式。

12.3.2.2 中子源

中子源是能够提供中子的装置,常用的中子源有以下三种类型。

(1)放射性核素中子源

这种中子源品种很多,主要有:①α中子源:210Po、227Ac、238Pu、241Am、242Cm、244Cm等放射性核素常用作α中子源的α辐射体。靶材料大多选用铍,核反应式为9Be(α,n)12C;②自发裂变中子源:主要采用252Cf核的自发裂变,中子产额很高,每毫克252Cf每秒放出2.3×109个中子;③光中子源:这种源利用的是9Be(γ,n)8Be核反应,常用124Sb作为激发(γ,n)反应的γ辐射体。

(2)加速器中子源

加速器是使带电粒子获得较高能量的装置。用加速器产生的质子、氘核、α粒子等去轰击靶核,使之产生发射中子的核反应,就构成了加速器中子源。这类中子源包括:①中子发生器:以氘核作轰击粒子,与靶核发生3H(d,n)4He或2H(d,n)3He核反应产生中子;②电子回旋回速器:用其形成的高速电子轰击高熔点重金属材料制成的旋转靶,产生很强的γ射线束,射向铍制成的二次靶,产生9Be(γ,n)8Be反应,形成快中子束;③直线加速器:产生中子的过程与回旋回速器类似,只是电子能量更高,可获得更强的中子束。

(3)反应堆中子源

这是中子活化分析应用最广的中子源,产生的中子能量是连续的,能量从0.001 eV到几千万电子伏。

12.3.2.3 中子活化分析步骤

图12-19 山东周店金矿一测线综合剖面图

①制备样品和标准参考物质。样品用土壤或岩、矿石标本等制备,制备和保存过程中应防止污染。标准参考物质在国际和国家标准部门公布的物质中选取,其中待测元素的化学状态和含量应与样品相近。②将样品和标准参考物质放在中子源中经受相同通量的中子照射。③用各种方法进行放射化学分离,剔除干扰放射性核素。④用核探测器测量样品和标准参考物质的核辐射。⑤用计算机处理数据,计算待测元素的含量。

12.3.2.4 中子活化方法的应用及实例

中子活化法测量微量元素具有分析检出限高(达10-6~10-11)、测量时不破坏样品,不受元素在物质中的化学状态的影响等优点。

图12-19是山东某金矿体的综合剖面。该金矿处在一主干断裂下盘的伴生断裂带上。矿区广泛出露印支期玲珑花岗岩,含矿蚀变带长约1000 m,金矿体长300 m,厚1~2 m,赋存于蚀变带中,与矿体对应最好。

阅读全文

与莫塞莱测量方法相关的资料

热点内容
肠蠕动按摩的方法有什么 浏览:640
棒针织毛衣收针方法视频 浏览:98
苹果手机竖屏锁定设置方法 浏览:522
苹果笔记本的关机在哪里设置方法 浏览:3
工业异丁烯分析方法的缺点 浏览:970
女孩梳头发方法简单 浏览:400
小脚发胀发酸发软的治疗方法 浏览:926
贴片电阻焊接方法视频 浏览:355
抽象方法怎么赋值 浏览:976
三角梅开花图片及养殖方法 浏览:647
小奶龟怎么养殖方法和注意事项 浏览:171
生产板块信息设计方法研究 浏览:902
720除458的简便计算方法 浏览:175
数控切割机故障大全及解决方法 浏览:296
黄金眼贴使用方法视频 浏览:794
睡前提升气质健身锻炼方法 浏览:560
日照常用消防设备销售方法 浏览:524
白凉粉制作西瓜果冻的方法步骤 浏览:904
正确带文件夹的方法 浏览:266
垃圾分析方法国标 浏览:796