‘壹’ 求值域的五种方法
求值域的五种方法:
1.直接法:从自变量的范围出发,推出值域。
2.观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域。
3.配方法:(或者说是最值法)求出最大值还有最小值,那么值域就出来了。
例题:y=x^2+2x+3x∈【-1,2】
先配方,得y=(x+1)^2+1
∴ymin=(-1+1)^2+2=2
ymax=(2+1)^2+2=11
4.拆分法:对于形如y=cx+d,ax+b的分式函数,可以将其拆分成一个常数与一个分式,再易观察出函数的值域。
5.单调性法:y≠ca.一些函数的单调性,很容易看出来。或者先证明出函数的单调性,再利用函数的单调性求函数的值域。
6.数形结合法,其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
7.判别式法:运用方程思想,根据二次方程有实根求值域。
8.换元法:适用于有根号的函数
例题:y=x-√(1-2x)
设√(1-2x)=t(t≥0)
∴x=(1-t^2)/2
∴y=(1-t^2)/2-t
=-t^2/2-t+1/2
=-1/2(t+1)^2+1
∵t≥0,∴y∈(-∝,1/2)
9:图像法,直接画图看值域
这是一个分段函数,你画出图后就可以一眼看出值域。
10:反函数法。求反函数的定义域,就是原函数的值域。
例题:y=(3x-1)/(3x-2)</p><p>先求反函数y=(2x-1)/(3x-3)
明显定义域为x≠1
所以原函数的值域为y≠1
(1)求值域的步骤及方法扩展阅读:
值域,在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
在实数分析中,函数的值域是实数,而在复数域中,值域是复数。
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或淡化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数的定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难。实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函数的理解,从而深化对函数本质的认识。
‘贰’ 函数求值域的步骤
求函数值域的几种常见方法
1直接法:利用常见函数的值域来求
一次函数y=ax+b(a 0)的定义域为R,值域为R;
反比例函数 的定义域为{x|x≠0},值域为{y|y≠0};
二次函数的定义域为R
当a>0时,值域为{y|y≥(4ac-b??)/4a};
当a<0时,值域为{y|y≤(4ac-b??)/4a}
例1.求下列函数的值域① y=3x+2(-1≤x≤1)
解:①∵-1≤x≤1,∴-3≤3x≤ 3,∴-1≤3x+2≤5,即-1≤y≤5,∴值域是y∈[-1,5]
②y=x??-2x+3∵1>0∴(4ac-b??)/4a=[4×1×3-(-2)??]/4×1=1即函数的值域是{y|y≥2}2.
二次函数在定区间上的值域(最值):
①f(x)=x??-6x+12 x∈[4,6]因为对称轴x=-b/2a=-(-6)/2×1=3
二次项系数1>0所以f(x)=x??-6x+12 在x∈[4,6]是增函数
所以f(x)min=f(4)=4 f(x)max=f(6)=12
f(x)的值域是[4,12]
②f(x)=x??-6x+12 x∈[0,5]因为对称轴x=-b/2a=-(-6)/2×1=3
二次项系数1>0所以f(x)=x??-6x+12 在x∈[0,3]是减函数,在x∈(3,5]是增函数
所以f(x)min=f(3)=3
而f(0)=12 f(5)=7,所以f(x)max=f(0)=12 f(x)的值域是[3,12]
3观察法求y=(√x)+1的值域
∵√x≥0 ∴√x+1≥1∴y=(√x)+1的值域是[1,+∞)
4配方法求y=√(x??-6x-5)的值域
∵-x??-6x-5≥0可知函数的定义域是[-5,-1]
∵-x??-6x-5=-(x+3)??+4因为-5≤x≤-1
所以-2≤x+3≤2 所以0≤(x+3)??≤4所以-4≤-(x+3)??≤0
终于得到0≤-(x+3)??+4≤4所以0≤√(x??-6x-5)≤2
所以y=√(x??-6x-5)的值域是[0,2]
5.图像法求y=|x+3|+|x-5|的值域
解:因为y=-2x+2(x<-3) y=8 (-3≤x<5) y=2x-2(x≥5)自己画图像由图可知y=|x+3|+|x-5|的值域是[8,+∞)
6.利用有界性求y=3^x/(1+3^x)的值域
解y=3^x/(1+3^x)两边同乘以1+3^x
所以 3^x=y(1+3^x)3^x=y+y3^x3^x-y3^x=y(1-y)3^x=y3^x=y/(1-y)
因为3^x>0 所以 y/(1-y)>0 解得 0<y<1值域为(0,1)
7判别式法求y=1/(2x??-3x+1)
解 ∵2x??-3x+1≠0∴函数的定义域是{x|x∈R,且x≠1, x≠1/2}
将函数变形可得2yx??-3yx+y-1=0当y≠0时,上述关于x的二次方程有实数解Δ=9y??-8y(y-1)≥0
所以y≤-8或y≥0当y=0时,方程无解,身体y=0不是原函数的值
所以y=1/(2x??-3x+1)的值域是(-∞,-8]∪(0,+∞)
8换元法求y=2x-√(x-1)的值域
解令t=√(x-1)显然t≥0以x=t??+1
所以y=2(t??+1)-t=2t??-t+2=2(t-1/4)??+15/8
因为t≥0所以y=2x-√(x-1)的值域是[15/8,+∞)
值域三角函数法、基本不等式法、导数法分别是高一下册,高二上册,高三的内容,在这里就不例举了
‘叁’ 求值域的4个步骤
(1)确定函数的定义域;
(2)分析解析式的特点;
(3)将端点值与极值比较,求出最大值与最小值;
(4)计算出函数的值域。
八、函数单调性法
先确定函数在其定义域(或定义域的某个子集上)的单调性,再求出函数值域的方法。考虑这一方法的是某些由指数形式的函数或对数形式的函数构成的一些简单的初等函数,可直接利用指数或对数的单调性求得答案;还有一些形如,看a,d是否同号,若同号用单调性求值域,若异号则用换元法求值域;还有的在利用重要不等式求值域失败的情况下,可采用单调性求值域。
九、数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式、直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
十、导数法
利用导数求闭区间上函数的值域的一般步骤:(1)求导,令导数为0;(2)确定极值点,求极值;(3)比较端点与极值的大小,确定最大值与最小值即可确定值域。
总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
‘肆’ 值域的求解方法
1、图像法
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
(4)求值域的步骤及方法扩展阅读
函数经典定义中,因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。即{y∣y=f(x),x∈D}
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
‘伍’ 函数的值域怎么算
求函数的值域的常用方法如下:
1、图像法:根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
7、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要圆野亩时刻注意不等式成立的条件,即“一正,二定,三相等”。
8、折叠三角代换法:利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1。直接计算麻烦,用三角代换法比较简单。做法:设a=sinx ,b=cosx,c=siny ,d=cosy,则ac+bd=sinx*siny+cosx*cosy =cos(y-x),因为我们知道cos(y-x)小于等于1,所以不等式成立。
‘陆’ 值域怎么求 要过程 计算值域的过程是什么
1、值域的求法有9种,过程是不同的。
2、配方法。过程:将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。画一个简易的图能更便捷直观的求出值域。
3、常数分离。过程:这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
4、逆求法。过程:对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。
5、换元法。过程:对于函数的某一部分,较复杂或生疏,可用换元法,将磨销函数转变成我们熟悉的形式,从而求解。
6、单调性。过程:可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
7、基本不等式。过程:根据学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
8、数形结合。过程:可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域
9、求导法瞎液游。过程:求出函数的埋并导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可的到值域了。
10、判别式法。过程:将函数转变成 ****=0 的形式,再用解方程的方法求出要满足的条件,求解即可。
‘柒’ 函数的值域怎么求
其没有固定的方法和模式。但常用方法有:
(1)直接法:从变量x的范围出发,推出y=f(x)的取值范围;
(2)配方法:配方法是求“二次函数类”值域的基本方法,形如f(x)=af^(x)+bf(x)+c的函数的值域问题,均可使用配方法
(3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到原函数的值域。形如y=cx+d/ax+b(a≠0)的函数均可使用反函数法。此外,这种类型的函数值域也可使用“分离常数法”求解。
(4)换元法:运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。形如y=ax+b±根号cx+d(a、b、c、d均为常数,且a≠0)的函数常用此法求解。举些例子吧!
(1)y=4-根号3+2x-x^
此题就得用配方法:由3+2x-x^≥0,得-1≤x≤3.
∵y=4-根号-1(x-1)^+4,∴当x=1时,ymin=4-2=2.
当x=-1或3时空缓,ymax=4.
∴函数值域散扰为[2,4]
(2)y=2x+根号1-2x
此题用换元法:
令t=根号1-2x(t≥0),则x=1-t^/2
∵y=-t^+t+1=-(t-1/2)^+5/4,
∵当t=1/2即x=3/8时,ymax=5/4,无最小值.
∴函数值域为(-∞,5/4)
(3)y=1-x/2x+5
用分离常数法
∵y=-1/2+7/2/2x+5,
7/2/冲亏旦2x+5≠0,
∴y≠-1/2
‘捌’ 怎样求函数的值域
求函数的值域首先必须明确两点:一点是值域的概念,即对于定义域A上的函数y=f(x)其值域就是指集合C={y|y=f(x),x∈A},另一点是函数的定义域、对应法则是确定函数的依据。
求值域常用方法:
1、图像法:
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法:
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法:
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围[2]。
6、判别式法:
判别式法即利用二次函数的判别式求值域。
7、复合函数法:
设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
(8)求值域的步骤及方法扩展阅读:
值域:数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
‘玖’ 高中函数的值域的8种求法教一下
函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:
的形式;
②逆求法(反求法):通过反解,用
来表示
,再由
的取值范围,通过解不等式,得出
的取值范围;常用来解,型如:
;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:
,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
常用方法有:
(1)直接法:从变量x的范围出发,推出y=f(x)的取值范围;
(2)配方法:配方法是求“二次函数类”值域的基本方法,形如F(x)=af^(x)+bf(x)+c的函数的值域问题,均可使用配方法
(3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到原函数的值域。形如y=cx+d/ax+b(a≠0)的函数均可使用反函数法。此外,这种类型的函数值域也可使用“分离常数法”求解。
(4)换元法:运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。形如y=ax+b±根号cx+d(a、b、c、d均为常数,且a≠0)的函数常用此法求解。举些例子吧!
(1)y=4-根号3+2x-x^
此题就得用配方法:由3+2x-x^≥0,得-1≤x≤3.
∵y=4-根号-1(x-1)^+4,∴当x=1时,ymin=4-2=2.
当x=-1或3时,ymax=4.
∴函数值域为[2,4]
(2)y=2x+根号1-2x
此题用换元法:
令t=根号1-2x(t≥0),则x=1-t^/2
∵y=-t^+t+1=-(t-1/2)^+5/4,
∵当t=1/2即x=3/8时,ymax=5/4,无最小值.
∴函数值域为(-∞,5/4)
(3)y=1-x/2x+5
用分离常数法
∵y=-1/2+7/2/2x+5,
7/2/2x+5≠0,
∴y≠-1/2
‘拾’ 值域怎么求
函数经典定义中,因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法好神则下对应的所有的象所组成的集合。即{y∣y=f(x),x∈D}
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
(10)求值域的步骤及方法扩展阅读
在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*求解,把的解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法;
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依高穗据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟友念亏悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
例如在分解(x²+x+1)(x²+x+2)-12时,可以令y=x²+x,则 原式=(y+1)(y+2)-12 =y²+3y+2-12=y²+3y-10 =(y+5)(y-2) =(x²+x+5)(x²+x-2) =(x²+x+5)(x+2)(x-1). 例2,(x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为 m+n=8 m-n=4 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 注意:换元后勿忘还原。
利用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域;