⑴ 请简述有限元分析的基本概念用有限元法分析工程问题的一般步骤是什么
有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理岩拿郑性质和几何区粗颂域.第二步:求解域离散化:将求敏衫解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习...
⑵ 元计算felac有限元方法,其基本思路和解题步骤
元计算felac有限元方法,其基本思路和解题步骤
(1)建立积分方程,根据虚位移原理或方程余量,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分采用有限元方法的前处理完成,并给出计算单元和节点编号相互之间的关系、节点的位置坐标,同时还需要列出问题的边界的节点号和相应的边值条件。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元的形函数。有限元方法中的形函数是在单元中选取的,由于各单元具有规则的几何形状,在选取形函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元形函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的函数值)的单元矩阵与荷载。
(5)总体合成:在得出单元矩阵与荷载之后,将区域中所有单元矩阵与荷载按一定法则进行迭加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(Dirichlet边界条件 )、自然边界条件(Neumann边界条件)、混合边界条件(Cauchy边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则后对总体有限元方程进行修正。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,采用适当的代数方程组求解器,求出各节点的函数值。
⑶ 有限元分析步骤
有限元分析步骤介绍如下:
为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。
第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。
第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值掘扒枝比较来评价并确定是否需要重复计算。
简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
⑷ 有限元分析方法是指什么
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
(4)有限元方法的基本思想与步骤扩展阅读:
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
⑸ 有限元分析的基本步骤是什么
元计算FELAC有限元分析的基本步骤如下。1)建立研究对象的近似模型。2)将研究对象分割成有限数量的单元 研究者很难从整体上分析对象系统,需要把对象系统分解成有限数量的、形式相同、相对简单的分区或组成部分,这个过程也被称为离散化。3)用标准方法对每个单元提出一个近似解 研究者能够比较容易地分析基本单元的行为,提出求解基本单元的方法。4)将所有单元按标准方法组合成一个与原有系统近似的系统 将基本单元组装成一个近似系统,在几何形状和性能特征方面可以近似地代表研究对象。5)用数值方法求解这个近似系统。 采用离散化之后,就不需要再求解复杂的偏微分方程组,而转换为求解线性方程组。数学家提出了许多求解大规模线性方程组的数值算法。6)计算结果处理与结果验证 由数值计算可以得到大量的数据,如何显示、分析数据并找到有用的结论是人们一直关系的问题。
内容拷贝元计算官网
⑹ 总结归纳有限元法的解题步骤
有限元法步骤可以分为:
1、结构离散为有限单元:选取合适的单元类型和单元大小来近嫌基卜似实际结构;
2、根据单个单元的刚度矩阵集装整体刚度矩阵;
3、处理边界条件和添加载荷;
得到节点位移
5、根据节点位移得出其他物理量,如应力,应变,支反力,根据需要,对结果进行处理.
其中1,2,3统称为前处理,4为解算锋正,5为后处理.
具体原理可以参考一些有芹穗限元的书籍,推荐王勖成的《有限单元法》,国外的可以看看Logan的《有限元方法编程》,英文名好像叫:“A First Course In the Finiet Element Method”.
⑺ 什么是有限元法和有限差分法
有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
有限差分方法(finite difference method)一种求偏微分(或常微分)方程和方程组定解问题的数值解的方法,简称差分方法。
(7)有限元方法的基本思想与步骤扩展阅读:
有限差分法(FDM)的起源,讨论其在静电场求解中的应用。以铝电解槽物理模型为例,采用FDM对其场域进行离散,使用MATLAB和C求解了各节点的电位。由此,绘制了整个场域的等位线和电场强度矢量分布。同时,讨论了加速收敛因子对超松弛迭代算法迭代速度的影响,以及具有正弦边界条件下的电场分布。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
⑻ 什么是有限元方法基本思想是什么基本步骤
有限元法是一种有效解决数学问题的解题方法。
其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,单元上所作用的力等效到节点上,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,就是用叉值函数来近似代替 ,借助于变分原理或加权余量法,将微分方程离散求解。
望采纳,谢谢
⑼ 什么是有限元方法基本思想是什么基本步骤
建模、离散、加载、计算、后处理
⑽ 有限元法的运用步骤
步骤1:剖分:
将待解区域进行分割,离散成有限个元素的集合。元素(单元)的形状原则上是任意的。二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等。每个单元的顶点称为节点(或结点)。
步骤2:单元分析:
进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数。
步骤3:求解近似变分方程
用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
有限单元法最早可上溯到20世纪40年代。Courant第一次应用定义在三角区域上的分片连续函数和最小位能原理来求解St.Venant扭转问题。现代有限单元法的第一个成功的尝试是在 1956年,Turner、Clough等人在分析飞机结构时,将钢架位移法推广应用于弹性力学平面问题,给出了用三角形单元求得平面应力问题的正确答案。1960年,Clough进一步处理了平面弹性问题,并第一次提出了有限单元法,使人们认识到它的功效。
50年代末60年代初,中国的计算数学刚起步不久,在对外隔绝的情况下,冯康带领一个小组的科技人员走出了从实践到理论,再从理论到实践的发展中国计算数学的成功之路。当时的研究解决了大量的有关工程设计应力分析的大型椭圆方程计算问题,积累了丰富而有效的经验。冯康对此加以总结提高,作出了系统的理论结果。1965年冯康在《应用数学与计算数学》上发表的论文《基于变分原理的差分格式》,是中国独立于西方系统地创始了有限元法的标志。
有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。