1. 如何使用频谱仪测量时钟信号相位噪声
首先,测相噪的频谱仪本身应有比被测要好的相噪指标。在测量信号源的相噪时,测量载频和一定频偏处的电平差就行了,再将测量结果减去10lgRBW。
2. 如何在频谱分析仪或矢量信号分析仪上测量功率谱密度(PSD)
PSD 测量值通常以Vrms2 /Hz 或Vrms/rt Hz 为单位(这里的rt Hz 指的是平方根赫兹)。或者,PSD也可以采用dBm/Hz 为单位。PSA、ESA、856XE/EC 或859XE 等频谱分析仪均可通过噪声标记对功率谱密度进行测量。矢量信号分析仪比如89600S 或89400,直接就有PSD 测量数据类型。在频谱分析仪上最简便的测量方法(测量结果以Vrms/rt Hz 为单位)就是:在振幅菜单中选择以伏特为单位的振幅(AMPLITUDE [硬键] > More > Y Axis Units > Volts)。在标记或标记功能菜单中打开噪声标记(例如:在ESA 上的选择顺序为Marker [硬键] > More > Function> Marker Noise)。在期望的数据点上做出标记并观察标记读数。比如,我们看到噪声标记读数为16 uV(Hz)或16 uV/Hz。这里的“(Hz)”由于分子伏特不能被平方,而将噪声结果归一化为1Hz 带宽(RBW),其正确的分母单位应该是根赫兹。由于 1Hz 的平方根仍旧是1Hz,因此并不影响结果且无需进行进一步计算。最后答案就是16 uV/rt Hz 或16 uV/Hz。 您还可选择以分贝为单位的振幅(比如dBuV)进行进一步的计算,从而获得线性结果。同样以
3. 如何使用频谱分析仪
频谱仪的参数设置背后有其依据,想学习如何使用频谱仪,得从频谱仪构造原理了解。简单介绍一下我们技术团队总结的检波器选择:
设置当前测量的检波方式,同时将检波方式应用于当前迹线。可选的检波器类型包括:正峰值、负峰值、标准、抽样、有效值平均或电压平均。
1. 正峰值
对于迹线上的每一个点,正峰值检波显示对应时间间隔内的采样数据中的最大值。
2. 负峰值
对于迹线上的每一个点,负峰值检波显示对应时间间隔内的采样数据中的最小值。
3. 标准检波
标准检波(也称正态检波或rosenfell检波)依次选取采样数据段中的最大值和最小值显示,即对于迹线上每一个奇数号点,显示采样数据的最小值,对于迹线上每一个偶数号点,显示采样数据的最大值。使用标准检波可直观地观察信号的幅度变化范围。
4. 抽样检波
对于迹线上的每一个点,抽样检波显示对应时间间隔中心时间点对应的瞬态电平。抽样检波适用于噪声或类似噪声信号。
5. 有效值平均
对于每一个数据点,检波器对相应时间间隔内的采样数据做均方根计算(见公式(2-8)),显示计算结果。有效值平均检波可以抑制噪声,观察弱信号。
欲知更多,请找我们的公,众-号。学习:安泰测试
4. 有谁知道频谱分析仪自动计量的方法的有哪些
不知道你问的是哪个项目的计量方法呢。目前我知道的有以下几个希望可以帮到你。
1、 电平和频响检定
电平测量准确度和频响是反映频谱仪的功率幅度测量的不确定度的重要指标参数。
本项检定包含两项内容:
所需主要检定设备包含:信号发生器、功率探头和功分器。其中信号发生器提供合适的测试信号,功分器要经过校准,有对应的修正数据。为避免驻波对测试结果的影响,通常在功分器与被检频谱仪直接连接固定衰减器,衰减器和连接电缆的损耗和频响同样需要计入修正系数。
绝对功率准确度检定时,频谱仪选用较小SPAN(如30kHz)和RBW(如10kHz),参考电平设置与信号发生器相等;频响测试时,参考频率点电平测试与上述绝对功芦做率检定时的频谱仪设置相同,其它频点测试时,频谱仪选用零SPAN(ZERO SPAN),RBW(如10kHz),参考电平设置与信号发生器相等。
功率计(功率探头)的读数修正后作为标准参考值,从而评估频谱仪的电平和频响。
2、 平均显示噪声电平检定
平均显示噪声电平表征频谱仪的测试灵敏度。
频谱仪的设置:输入端连接一个50 Ω负载匹配器;
参考电平设置为较低电平,如-60dBm;
零SPAN或较小SPAN
较小的RBW(小于等于1/10的中心频率,不大于1kHz)
显示功率值归一化到1 Hz。(dBm/Hz)
3、 衰减器准确度检定
检定频谱仪内部衰减器的设定值准确度。
连接如下图,此时信号发生器产生一个恒定的较大功率的信号(如 10dBm),通过精密衰减器连接被检频谱仪的射频输入端。
测量设置:
频谱仪和信号发生器选定参考频点进行设置;
设置被检频谱仪的内置衰减器,并在全量程进行切换;
对应频谱仪内置衰减器的设置值,改变精密衰减器的数值,使两激没个衰减器设置值之和对应被检频谱仪内置衰减器的总量程;
以频谱仪内置衰减器为10dB时,频谱仪的功率读数作为基准电平参考值;其它衰减设置值与上述电平参考值之差,经过精密衰减器的校准数据修正后,陪铅衡即为目标衰减器准确度。
每计量一个项目连接一次仪器,实在是麻烦,可以用纳米软件的NSAT-3050频谱分析仪自动计量系统,可以关注公、众、号。纳米软件了解详情。
5. 什么叫相位噪声 再频谱测试中用什么作用呢
没有一种振荡器是绝对稳定的。虽然我们看不到频谱分析仪本振系统的实际频率抖动,但仍能观察到本振频率或相位不稳定性的明显表征,这就是相位噪声(有时也叫噪声边带)。
它们都在某种程度上受到随机噪声的频率或相位调制的影响。本振的任何不稳定性都会传递给由本振和输入信号所形成的混频分量,因此本振相位噪声的调制边带会出现在幅度远大于系统宽带底噪的那些频谱分量周围。显示的频谱分量和相位噪声之间的幅度差随本振稳定度而变化,本振越稳定,相位噪声越小。它也随分辨率带宽而变,若将分辨率带宽缩小 10 倍,显示相位噪声电平将减小 10 dB。
相位噪声频谱的形状与分析仪的设计,尤其是用来稳定本振的锁相环结构有关。在某些分析仪中,相位噪声在稳定环路的带宽中相对平坦,而在另一些分析仪中,相位噪声会随着信号的频偏而下降。相位噪声采用 dBc(相对于载波的 dB 数)为单位,并归一化至 1 Hz 噪声功率带宽。有时在特定的频偏上指定,或者用一条曲线来表示一个频偏范围内的相位噪声特性。
通常,我们只能在分辨率带宽较窄时观察到频谱仪的相位噪声,此时相位噪声使这些滤波器的响应曲线边缘变得模糊。使用前面介绍过的数字滤波器也不能改变这种效果。对于分辨率带宽较宽的滤波器,相位噪声被掩埋在滤波器响应曲线的边带之下,正如之前讨论过的两个非等幅正弦波的情况。
一些现代频谱仪或信号分析仪(例如是德科技 X 系列)允许用户选择不同的本振稳定度模式,使得在各种不同的测量环境下都能具备最佳的相位噪声。
在任何情况下,相位噪声都是频谱仪分辨不等幅信号能力的最终限制因素。如图所示,根据 3 dB 带宽和选择性理论,我们应该能够分辨出这两个信号,但结果是相位噪声掩盖了较小的信号。
6. 是否可以将频谱分析仪当做网络分析仪使用
可以。
有2种方法可将频谱分析仪当作网络分析仪使用,但是都只能进行标量测量
方法1:使用频谱分析仪内置的跟踪信号源。大部分是德频谱仪可以加装这个选件。如果要测量反射系数,则还需要一个定向耦合器去采集反射功率。
方法2:使用独立的源。如需要可配上耦合器。前提是频谱仪的扫描速度要快过信号源的扫描速度。但这种方式通常不被推荐,因为它的准确性较低。
对于校准,可用到的方法是归一化的方法。这种方法把接收机和源的频率响应移除。然而,矢量网络分析仪采用更强大的误差校准技术,还可以消除不匹配和交调带来的的影响。这就意味着,一般来讲,和频谱分析仪方法相比较,网络分析仪可以进行更准确的测量。