① 激光粒度分析仪的基本概念有哪些
粒度分析的基本概念
(1)颗粒:具有一定尺寸和形状的微小物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子和原子;
(2)粒度:颗粒的大小;
(3)粒度分布:用一定的方法反映出一系列不同粒径颗粒分别占粉体总量的百分比;
(4)粒度分布的表示方法:表格法(区间分布和累积分布)、图形法、函数法,常见的有R-R分布,正态分布等;
(5)粒径:颗粒的直径,一般以微米为单位;
(6)等效粒径:指当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直
径来代表这个实际颗粒的直径;
(7)D10,累计分布百分数达到10% 所对应的粒径值;
D50,累计分布百分数达到50%时所对应的粒径值;又称中位径或中值粒径;
D90,累计分布百分数达到90%时所对应的粒径值;
D(4,3)体积或质量粒径平均值;
常用的粒度测量方法
(1)筛分法
(2)沉降法(重力沉降法、离心沉降法)
(3)电阻法(库尔特颗粒计数器)
(4)显微镜(图像)法
(5)电镜法
(6)超声波法
(7)透气法
(8)激光衍射法
各种方法的优缺点
筛分法:优点:简单、直观、设备造价低、常用于大于40μm的样品。缺点:不能用于40μm以细的样品;结果受人为因素和筛孔变形影响较大。
显微镜法:优点:简单、直观、可进行形貌分析。 缺点:速度慢、代表性差,无法测超细颗粒。
沉降法(包括重力沉降和离心沉降):优点:操作简便,仪器可以连续运行,价格低,准确性和重复性较好,测试范围较大。 缺点:测试时间较长。
电阻法:优点:操作简便,可测颗粒总数,等效概念明确,速度快,准确性好。 缺点:测试范围较小,小孔容易被颗粒堵塞,介质应具备严格的导电特性。
电镜法:优点:适合测试超细颗粒甚至纳米颗粒、分辨率高。 缺点:样品少、代表性差、仪器价格昂贵。
超声波法:优点:可对高浓度浆料直接测量。 缺点:分辨率较低。
透气法:优点:仪器价格低,不用对样品进行分散,可测磁性材料粉体。 缺点:只能得到平均粒度值,不能测粒度分布。
激光法:优点:操作简便,测试速度快,测试范围大,重复性和准确性好,可进行在线测量和干法测量。 缺点:结果受分布模型影响较大
② 激光衍射测直径与普通物理实验中的其他测量直径的方法相比有何优点
更加精细准确,在测量直径很小(几十微米)的物体时有明显优势
③ 激光衍射法和动态光散射原理的激光粒度仪分别属于《通用理化性能分析检测能力的技术分类》中的哪一类
如果您打算购买一台激光粒度分析仪,你可能要考虑以下技术规格:
1,测量范围:分为纳米和微米级
测试方法:干法和湿法/>检测原理:米氏散射和动态光散射
4,激光一般分为半导体激光器和氦氖气体激光,并没有热身之前使用的半导体激光的优点,??使用寿命长生活,缺点是不发光稳定,现货可能无法为圆形,冬季和夏季预热约30分钟,前15分钟使用的气体激光器,其优点是,现货圆,光稳定性 /> 5,探针的数量,也被称为测量信道,不同颗粒大小的分析仪的检测器环的数目是不一样的,测量的精度是不一样的,所以建议更多的数量比环,布局角度
如果你想了解的粒度分析仪国家标准,那么你应该看到几个标准的文件:
1,ISO-13320
2,ISO-13322 -1
GB/T19587- 2004年
不知道我的答案是不是你所需要的,我只知道这么多的参考
④ 采用激光衍射测细丝直径相比普通物理实验中的其他方法有哪些优点
更精确,因为激光衍射测细丝直径的分辨率是跟激光的波长挂钩的。
⑤ 在激光单缝衍射法测量缝宽中,缝宽的改变对衍射图样的影响是什么
在激光单缝衍射法测量缝宽中,缝宽的改变对衍射图样的影响:单缝衍射中满足衍射反比律,即缝宽和条纹宽度成反比,缝越宽,条纹间距越小,光栅衍射中,光栅常数越小,得到的条纹就越细越亮,测量精度随之增大。
但当缝的宽度调到很窄,可以跟光波相比拟时,光通过缝后就明显偏离了直线传播方向,照射到屏上相当宽的地方,并且出现了明暗相间的衍射条纹,纹缝越小,衍射范围越大,衍射条纹越宽。但亮度越来越暗。
菲涅尔衍射
在光学里,菲涅耳衍射指的是光波在近场区域的衍射,即光源或衍射的图样的屏与衍射孔(障碍物)的距离是有限的。菲涅耳衍射积分式可以用来计算光波在近场区域的传播,因法国物理学者奥古斯丁·菲涅耳而命名,是基尔霍夫衍射公式的近似。
光源和光屏到障碍物的距离均不是很远,并且没有使用透镜。此时光线不是平行光,即波阵面不是平面。这种情况是菲涅尔最早(1818年)描述的,所以称为菲涅尔衍射。
以上内容参考:网络-单缝衍射
⑥ 目前常用哪些方法光学测距法
给你介绍几种常用的:
1、激光三角法测距。
利用激光良好的方向性,以及几何光学成像的比例特性,将一束激光照射到物体上,在与激光光束成一定角度的位置用光学成像系统检测照射到物体的光斑,这样镜头-光斑、镜头平面到激光光束的连线、光斑到镜头平面与激光光束交点构成一三角形,而镜头-光斑的像、镜头平面以及过光斑的像的激光光束平行线与镜头平面的交点成一个与前面所描述的三角形相似的三角形。用光电传感器阵列检测到光斑的像的位置,则可以根据三角形性质计算出光斑位置。这种测量方法适合距离较短的情况。
目前的激光三坐标测量机(抄数机)一般都采用激光三角法测距。
2、光速法测距。
利用光速不变原理,检测激光发射与反射光反射回来的时间差,从而计算出距离。为了提高精度,可以将激光调制上一个低频信号,利用测量反射光的相位差来测得反射时间差。这种方法一般用于远距离测量。
目前各种激光测距仪一般用这种方法测量。
3、激光干涉法测距。
这是一种相对测量, 它无法测得一个物体离仪器的绝对距离,但可以测得两被测物体的相对距离。它的原理是一台迈克尔逊干涉仪,利用反射镜距离变化时干涉条纹的变化来测量,反射镜从物体A运动到物体B,干涉条纹变化的数量反映了其距离。这种测量要求条件较高,但是可以精确测量,它也是目前所有测量手段中最精确的一种。
4、光学图象识别技术测量位移。
其所用原理与三角法相似,但是可以不用激光,而是直接对移动物体拍照,利用前后两幅图片中物体在图片中的位移来计算物体真实的位移。、
这种技术在光电鼠标中大量使用。
5、光栅测量位移。
利用光栅形成的莫尔条纹,计算莫尔条纹变化量即可计算出位移量。
这是目前应用最多的技术,光栅尺大量应用于工业上的行程测量。
6、激光衍射法测量细丝、小孔直径和狭缝宽度。
测量衍射斑的大小就可以计算出孔或缝的尺寸。
7、激光扫描法测量物体外尺寸。
其本质就是利用光的直线传播原理和激光的良好方向性,通过测量物体影子的尺寸来间接得到物体尺寸。
8、激光多普勒测量位移。
利用多普勒频移原理测量物体的速度,对速度进行积分就得到位移。
9、激光全息法、散斑法测量位移。
原理十分复杂,我就不讲了,你有兴趣的话可以自己查资料。