Ⅰ 全站仪附和导线测量的步骤及数据处理方法是什么
导线测量步骤:
1、在AC点架设基座、B架设仪器。
2、量取ABC到点位的高度并记录。
3、在仪器中输入量取的高度及A点的高
4、仪器竖丝照准A点,设置一个整数角度,然后偏移一点角度,再旋转回去(减少因仪器按键的误差)记录角度。接着旋转仪器目镜至C点并照准,记录角度。 倒镜(盘右)后再次照准C点,记录角度,再次旋转到A点,记录角度。同样的方式测3到4次,看夹角是否稳定,得到左夹角。
5、依照4的步骤得到右夹角。
6、左角加上右角是否等于360度,不等,按照角度比例分配。
7、把3部量取的高度,输入到仪器中。横丝照准A点(如果不需要三角高程可以不用很准确)测得距离及高差。同样3次以上取均值。
8、按照7部测得B到C的距离及高差。
9、本站结束,仪器往C点。
附和导线平差步骤:
1、已知起始边与结束边的方位角及坐标。求得坐标增量闭合差等。
2、通过起始边通过测量数据算的结束边的方位角,看是否相同,坐标是否相同
3、修正测量数据,与已知数据相同。
Ⅱ 数据处理的基本方法有哪些
典型的计算方法有:1、列表法2、作图法3、逐差法4、最小二乘法等等
Ⅲ 测量方法与数据处理
5.6.2.1 测量方法
常时微动测量,一般可在地表、地下和建筑物中进行,如图5.37所示。在地表或建筑物中测量时,应保证观测环境在一定范围内无特定振动源(如交通和工程振动等)的影响。测点应平坦,以便于安置和调整(调平和对准方向)拾振器。在建筑物中测量时,测点应选在主轴上。地下测量可以和地表测量结合起来进行,当在钻孔中进行时,拾振器可以在基岩面上或建筑物的持力层上。
图5.37常时微动测量方法示意图
测量系统由拾振器、放大器、滤波器、磁带记录器和波形显示器组成。拾振器一般采用固有周期为1s的速度型电磁式拾振器。如果在一个点要测两个水平分量(南北、东西)和垂直分量,就需三台拾振器。而井中拾振器采用圆筒式且带有双分量(水平)或三分量(水平、垂直)换能器的拾振器。在高层建筑物中测量时,需采用长周期拾振器。从拾振器输出的信号,通过放大器放大后输入到记录器,其间还有将速度波形转换为位移波形的积分电路以及转换为加速度波形的微分电路,可根据不同的目的选用。在数据记录器中,记录微动的波形。在交通振动等短周期干扰较大的场合,可通过滤波器压制或消除干扰。在测量时,波形显示器用于监视信息的质量,选择干扰小的波形输入记录器进行记录。
5.6.2.2 数据处理
常时微动资料处理的基本任务是获取微动的振幅及表征场地振动特性的各种周期。处理分析方法主要有两种,一种是周期频度分析,另一种是频谱分析。目前普遍采用频谱分析。
(1)周期频度分析
周期频度分析法是通过计算各种周期成分的波所出现的次数,从而得出波形和周期特性。具体做法是在观测记录中选取质量较好的记录段约2min,按波形正反向变化大致对称划一条零线,波形与零线形成一系列的交点。取相邻两点时差的2倍作为相应波的周期(精度达0.01s)。依次读取进行统计,以周期为横坐标,以不同周期波形出现的次数为纵坐标,即得到各种周期分布的频度曲线.频度最高的周期称作优势周期,记录中周期最大的称作最大周期,用出现于记录波形上波数除以记录长度(时间)所求出的周期称为平均周期。该方法的分析结果可近似代替频谱分析,还可消除一些高频干扰,对于周期小于1s的常时微动,两种方法的处理结果在实际应用中效果相同(图5.38)。
图5.38常时微动的频度曲线与傅氏谱比较
(2)频谱分析
由于常时微动的波实际上是由一系列频率成分所构成的复合波,了解这种复合振动中有哪些频率成分,以及各种频率成分所具有的能量,是极为重要的。对常时微动这样一种随时间作不规则振动的量,通常采用功率谱分析法。
设常时微动为时间的函数,用x(t)表示,则将它变换到频率域的傅氏积分为
环境与工程地球物理
对于常时微动这种持续时间无限,且作不规则振动的量,傅里叶积分是不能直接求得的。需将记录划分为若干段,对各个时间段分别进行傅里叶积分:
环境与工程地球物理
此外,利用x(ω)及其共轭复数x*(ω)还可以求得功率谱P(ω):
环境与工程地球物理
实际中,将明显混入噪音的时间段剔除不用,用各时间段波形的功率谱Pn(ω)的算术平均值表示,即可求得平均功率谱:
环境与工程地球物理
一般取10s为一个时间段,大约作20次左右的叠加,就能得到该观测点的比较稳定的功率谱。功率谱与傅氏谱之间没有本质区别,二者大体上成平方关系,可理解功率谱强调结构物对某些频率成分的波的影响。
Ⅳ 逆向工程中数据测量的方法有哪些,有何优缺点
直接测量、间接测量、接触测量和非接触测量,特点分别是无需对被测量与其他实测量进行计算,计算所得,与工件的被测表面直接接触和与工件的被测表面之间没有机械的测力存在。
1、直接测量:无需对被测量与其他实测量进行一定函数关系的辅助计算而直接得到被测量值的测量。
2、间接测量:通过直接测量与被测参数有已知函数关系的其他量而得到该被测参数量值的测量。
3、接触测量:仪器的测量头与工件的被测表面直接接触,并有机械作用的测力存在(如接触式三坐标等)。
4、非接触测量:仪器的测量头与工件的被测表面之间没有机械的测力存在(如光学投影仪、气动量仪测量和影像测量仪等)。
凭借 则曲面的品质会较差而曲面的光顺连续 使用三坐标测量机进行测量时,存目前的设备和技术,尚无法达到这个目 性达到要求,又很难保证点数据和曲面 在一个很复杂的综合误差,这一复杂的的,逆向工程技术不可避免地存在其局之间的误差。
在它们之间取舍,需综合误差造成了三坐标测量机测量结果限性。逆向工程最突出的问题是客观模 要工程技术人员的判断和操作技巧的不确定性。误差有系统性误差和随机型和CAD模型之间的造型误差。
在产品加工中会引性误差,只有系统性误差可以被预测和差的主要因素。
Ⅳ 常用的数据处理方法
前面所述的各种放射性测量方法,包括航空γ能谱测量,地面γ能谱测量和氡及其子体的各种测量方法,都已用在石油放射性勘查工作之中。数据处理工作量大的是航空γ能谱测量。
(一)数据的光滑
为了减少测量数据的统计涨落影响及地面偶然因素的影响,对原始测量数据进行光滑处理。消除随机影响。
放射性测量数据光滑,最常用的光滑方法是多项式拟合移动法。在要光滑测量曲线上任取一点,并在该点两边各取m个点,共有2m+1点;用一个以该点为中心的q阶多项式对这一曲线段作最小二乘拟合,则该多项式在中心点的值,即为平滑后该点的值。用此法逐点处理,即得光滑后的曲线,光滑计算公式(公式推导略)为
核辐射场与放射性勘查
式中:yi+j、为第i点光滑前后的值;为系数;为规范化常数。
五点光滑的二次多项式的具体光滑公式为
核辐射场与放射性勘查
如果一次光滑不够理想,可以重复进行1~2次,但不宜过多重复使用。
光滑方法,还有傅里叶变换法,以及多点平均值法,多点加权平均值法等。
使用那种方法选定之后,一般都通过编程存入计算机,进行自动化处理。
图7-2-1是美国东得克萨斯州一个油田上的航空γ放射性异常中的两条剖面图(A-B和B-C)。经过光滑处理后,低值连续,清晰明显,与油田对应的位置较好。说明四个油藏都在铀(w(U))和钾(w(K))的低值位置。
图7-2-1 美国东得克萨斯油田航空γ放射性异常剖面图
(二)趋势面分析方法
趋势分析主要反映测量变量在大范围(区域)连续变化的趋势。在原始数据中常含有许多随机误差和局部点异常,直观反映是测量曲线上下跳动或小范围突变。使用趋势分析处理是为了得到研究区域辐射场的总体分布趋势。
趋势面分析,实质上是利用多元回归分析,进行空间数据拟合。根据计算方法不同,又可分为图解法趋势面分析和数学计算法趋势面分析。图解法趋势面分析的基本思路是对观测数据采用二维方块取平均值法,或滑动平均值法计算趋势值。方块平均值法是对每一方块内的数据取平均值,作为该方块重心点的趋势值。滑动平均值法是设想一个方框,放在测区数据分布的平面图上,把落在方框内的测点数据取平均值,记在方框中心上,最后得到趋势面等值图。一般讲做一次是不够的,需要如此重复3~9次。一般都有专门程序可供使用(不作详述)。如图7-1-14(a)为原始数据等值图,中间有许多呈点状高值或低值分布,经过四次趋势面分析之后可以清楚地看出三个低值异常区。
计算法趋势面分析是选定一个数学函数,对观测数据进行拟合,给出一个曲线。拟合函数常用的有多项式函数,傅里叶级数,三角函数以及指数函数的多项式函数等。目前以二维多项式函数应用最多。
(三)岩性影响及其校正分析
不同岩石、不同土壤中放射性核素含量是有差别,有的相差还比较大,有的相差甚至超过10%~20%。这是油田放射性测量的主要影响因素。
一个测区可能出现不同土壤分布,把不同放射性水平的土壤上测量结果校正到同一水平(叫归一化方法)是非常重要的工作,主要有下面三种方法。
1.确定土壤核素含量的归一化方法
利用γ能谱测量资料,根据测区地质图或土壤分布图,分别统计总道的总计数率和铀、钍、钾含量的平均值。然后进行逐点校正,即逐点减去同类土壤的平均值,其剩余值即为异常值。
核辐射场与放射性勘查
式中:分别为第 i类土壤中测点 j的总计数和铀、钍、钾含量。分别为i类土壤的平均总计数和铀、钍、钾的平均值。分别为扣除各类土壤平均值后的剩余值,即为各测点不同土壤校正后的归一化的油田的放射性异常。根据需要可以用来绘制平面剖面图或等值线图,即为经过不同岩性(土壤)校正后的油田放射性异常图。
这个方法的缺点是计算工作量较大。
2.用钍归一化校正铀、钾含量
对自然界各种岩石中的钍、铀、钾含量的相关性研究(D.F.Saundr,1987),发现它们的含量具有很好的相关性(表7-2-2);而且随岩性不同含量确有相应的增加或减小,据此可以利用钍的含量计算铀和钾的含量。钍有很好的化学稳定性,钍在地表环境条件下基本不流失。因此,利用钍含量计算出来的铀、钾含量,应当是与油藏存在引起的铀、钾
表7-2-2 几种岩石的钍、铀、钾含量
异常无关的正常值。用每点实测的铀、钾,减去计算的正常值,那么每个测点的铀、钾剩余值(差值)应当是油气藏引起的异常值。这样就校正了岩性(土壤)变化的影响。
对于航空γ能谱测量的总道计数率,也同样可以用钍含量(或计数率)归一化校正总道计数率,效果也非常好。
具体方法如下。
1)对铀、钾的归一化校正。
2)根据航空γ能谱测量或地面γ能谱测量数据,按测线计算铀、钍、钾含量。根据岩石(土壤)中钍与铀,钍与钾的相关关系(表7-2-1),认为铀和钍存在线性关系,钾和钍存在对数线性关系,于是建立相应的拟合关系式。
核辐射场与放射性勘查
式中:A、B、A′、B′为回归系数(对每个测区得到一组常数);wi(Th)为测点i实测的钍含量;w点i(U)、w点i(K)为i点由钍含量计算的铀、钾含量。
计算每个测点的铀、钾剩余值:
核辐射场与放射性勘查
式中:wi(U)、wi(K)为测点i的实测值。剩余值Δwi(U)和Δwi(K)为油藏引起的异常值。
南阳-泌阳航空γ能谱测区,测得的钍、铀、钾含量,按钍含量分间隔,计算其平均值,列于表7-2-3。根据此表中数据,由(7-2-7)和(7-2-8)式得:
核辐射场与放射性勘查
表7-2-3 南阳-泌阳航空γ能谱计算的钍、铀、钾
3)对总道γ计数率的归一化校正。钍比较稳定,可以认为与油气藏形成的放射性异常无关。经研究得知,原岩的总道计数率(I点i)与钍含量的对数值存在近似的线性关系,即
核辐射场与放射性勘查
根据γ能谱实测数据求得实测i点的总道计数率(Ii)与I点i的差值:
核辐射场与放射性勘查
即为消除岩性影响的,由油气藏引起的γ总计数率异常值。
图7-2-2 钍归一化校正岩性影响的结果
图7-2-2为任丘双河油田,两条测线(1100线和11010线)。用钍归一化法,消除岩性影响的结果。油田边界高值和油田上方低值,除钾11010线外都比较明显清晰。与已知油田边界基本一致。
Ⅵ 物理实验数据处理的方法有哪些
实验数据的处理方法
实验结果的表示,首先取决于实验的物理模式,通过被测量之间的相互关系,考虑实验结果的表示方法。常见的实验结果的表示方法是有图解法和方程表示法。在处理数据时可根据需要和方便选择任何一种方法表示实验的最后结果。
(1)实验结果的图形表示法。把实验结果用函数图形表示出来,在实验工作中也有普遍的实用价值。它有明显的直观性,能清楚的反映出实验过程中变量之间的变化进程和连续变化的趋势。精确地描制图线,在具体数学关系式为未知的情况下还可进行图解,并可借助图形来选择经验公式的数学模型。因此用图形来表示实验的结果是每个中学生必须掌握的。
图解法主要问题是拟合面线,一般可分五步来进行。
①整理数据,即取合理的有效数字表示测得值,剔除可疑数据,给出相应的测量误差。
②选择坐标纸,坐标纸的选择应为便于作图或更能方使地反映变量之间的相互关系为原则。可根据需要和方便选择不同的坐标纸,原来为曲线关系的两个变量经过坐标变换利用对数坐标就要能变成直线关系。常用的有直角坐标纸、单对数坐标纸和双对数坐标纸。
③坐标分度,在坐标纸选定以后,就要合理的确定图纸上每一小格的距离所代表的数值,但起码应注意下面两个原则:
a.格值的大小应当与测量得值所表达的精确度相适应。
b.为便于制图和利用图形查找数据每个格值代表的有效数字尽量采用1、2、4、5避免使用3、6、7、9等数字。
④作散点图,根据确定的坐标分度值将数据作为点的坐标在坐标纸中标出,考虑到数据的分类及测量的数据组先后顺序等,应采用不同符号标出点的坐标。常用的符号有:×○●△■等,规定标记的中心为数据的坐标。
⑤拟合曲线,拟合曲线是用图形表示实验结果的主要目的,也是培养学生作图方法和技巧的关键一环,拟合曲线时应注意以下几点:
a.转折点尽量要少,更不能出现人为折曲。
b.曲线走向应尽量靠近各坐标点,而不是通过所有点。
c.除曲线通过的点以外,处于曲线两侧的点数应当相近。
⑥注解说明,规范的作图法表示实验结果要对得到的图形作必要的说明,其内容包括图形所代表的物理定义、查阅和使用图形的方法,制图时间、地点、条件,制图数据的来源等。
(2)实验结果的方程表示法。方程式是中学生应用较多的一种数学形式,利用方程式表示实验结果。不仅在形式上紧凑,并且也便于作数学上的进一步处理。实验结果的方程表示法一般可分以下四步进行。
①确立数学模型,对于只研究两个变量相互关系的实验,其数学模型可借助于图解法来确定,首先根据实验数据在直角坐标系中作出相应图线,看其图线是否是直线,反比关系曲线,幂函数曲线,指数曲线等,就可确定出经验方程的数学模型分别为:
Y=a+bx,Y=a+b/x,Y=a\b,Y=aexp(bx)
②改直,为方便的求出曲线关系方程的未定系数,在精度要求不太高的情况下,在确定的数学模型的基础上,通过对数学模型求对数方法,变换成为直线方程,并根据实验数据用单对数(或双对数)坐标系作出对应的直线图形。
③求出直线方程未定系数,根据改直后直线图形,通过学生已经掌握的解析几何的原理,就可根据坐标系内的直线找出其斜率和截距,确定出直线方程的两个未定系数。
④求出经验方程,将确定的两个未定系数代入数学模型,即得到中学生比较习惯的直角坐标系的经验方程。
中学物理实验有它一套实验知识、方法、习惯和技能,要学好这套系统的实验知识、方法、习惯和技能,需要教师在教学过程中作科学的安排,由浅入深,由简到繁加以培养和锻炼。逐步掌握探索未知物理规律的基本方法。
Ⅶ 测量数据处理理论与方法
测量数据处理包括了很多内容,因为测量的手段有很多,每一种手段都需要处理数据,常规的测量手段如:水准测量、全站仪、经纬仪(目前基本不用)这些测量手段的数据处理和计算相对简单些,你只需知道坐标和方位角的正反算,以及高程的传递和误差的分摊就可以了,这些你可以看测量学这本书就能学会!现代测量手段由于采集的数据量大所以处理数据变的复杂了许多,如GPS、三维激光扫描等等,这些数据处理需要先进行数据建模然后再平差,当然我们一般的测量人员都只需会运用处理数据的软件就可以。前面所述的各种放射性测量方法,包括航空γ能谱测量,地面γ能谱测量和氡及其子体的各种测量方法,都已用在石油放射性勘查工作之中。数据处理工作量大的是航空γ能谱测量。
(一)数据的光滑
为了减少测量数据的统计涨落影响及地面偶然因素的影响,对原始测量数据进行光滑处理。消除随机影响。
放射性测量数据光滑,最常用的光滑方法是多项式拟合移动法。在要光滑测量曲线上任取一点,并在该点两边各取m个点,共有2m+1点;用一个以该点为中心的q阶多项式对这一曲线段作最小二乘拟合,则该多项式在中心点的值,即为平滑后该点的值。用此法逐点处理,即得光滑后的曲线,光滑计算公式(公式推导略)为
核辐射场与放射性勘查
式中:yi+j、为第i点光滑前后的值;为系数;为规范化常数。
五点光滑的二次多项式的具体光滑公式为
核辐射场与放射性勘查
如果一次光滑不够理想,可以重复进行1~2次,但不宜过多重复使用。