⑴ 蜗轮蜗杆怎么测量呀求告知
蜗杆齿顶圆及蜗轮喉圆直径,可用高精度游标卡尺或千分尺直接测量,用游标卡尺测量蜗轮喉圆直径。
蜗杆齿高的测量方法:用高精度游标卡尺的深.度或其他深.度测量工具直接测量蜗杆齿高。
蜗杆轴向的测量:测量蜗杆轴向齿距,可以直接用直齿或游标卡尺在蜗杆的齿顶圆柱上沿轴向直接测量。蜗杆齿形角可用角度尺或齿形样板在蜗杆的轴向剖面和法向剖面内侧测量。
蜗轮蜗杆大致有这些系列:
1、WH系列蜗轮蜗杆减速机:WHT/WHX/WHS/WHC
2、CW系列蜗轮蜗杆减速机:CWU/CWS/CWO
3、WP系列蜗轮蜗杆减速机:WPA/WPS/WPW/WPE/WPZ/WPD
4、TP系列包络蜗轮蜗杆减速机:TPU/TPS/TPA/TPG5、PW型平面二次包络环面蜗杆减速机
另外,根据蜗杆形状的不同,蜗杆传动可以分为圆柱蜗杆传动、环面蜗杆传动和锥蜗杆传动。
⑵ 怎么实际测量蜗轮蜗杆用什么测量工具
用角度规测量牙型角度,工具是卡尺,千分尺测量大径和小径,法向齿后。可以用三针法测量中径,百分表测量圆跳和全跳。
用角度规测量时应先校准零位,万能角度尺的零位,是当角尺与直尺均装上,而角尺的底边及基尺与直尺无间隙接触,此时主尺与游标的“0”线对准。调整好零位后,通过改变基尺、角尺、直尺的相互位置可测试0-320°范围内的任意角。
在万能角度上,基尺是固定在尺座上的,角尺是用卡块固定在扇形板上,可移动尺是用卡块固定在角尺上。若把角尺拆下,也可把直尺固定在扇形板上。由于角尺和直尺可以移动和拆换,使万能角度尺可以测量0º~320º的任何角度。
角尺和直尺全装上时,可测量0º~50º的外角度,仅装上直尺时,可测量50º~140º的角度,仅装上角尺时,可测量140º~230’的角度,把角尺和直尺全拆下时,可测量230º~320º的角度(即可测量40º~130º的内角度)。
(2)蜗轮蜗杆减速机齿轮间隙测量方法扩展阅读:
蜗轮与蜗杆在其中间平面内相当于齿轮与齿条,蜗杆又与螺杆形状相似。蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小。
当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在起重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用。
5传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高。
⑶ 如何检查主减速器中主被动齿轮的啮合间隙
检查圆锥齿轮啮合间隙时,可将略大于0.5mm直径的熔断丝挤在两齿轮的啮合中间,经转动齿轮将熔断丝挤压后,然后再测量熔断丝被齿轮挤压后的厚度,即得到被测的间隙。新装齿轮的啮合间隙应在0.2-0.8mm范围内,最大间隙不得大于0.4mm。若不符合要求时应调整,其方法是:若测得齿轮啮合间隙过大时,可根据所测得啮合间隙减去正常啮合间隙所得的差值,便是要经过调整所要消除的间隙。此时,应使右轴承调整垫减少,左轴承调整垫增加。即将右侧轴承垫取出放在左侧轴承调整处,其调整垫的厚度应为多余间隙的一半,从而使被动圆锥齿轮向主动圆锥齿轮靠近,以减小啮合间隙,然后再抽取变速器下轴前轴承盖处的调整垫,以使主动圆锥齿轮后移而靠近被动圆锥齿轮。其减少垫片的厚度值应为多余间隙的一半。反之,若所测得间隙过小时,其调整方法与上述相反。在此应该提及的是,中央传动的主动、被动圆锥齿轮轮齿齿面虽然要磨损,但只要啮合印痕正确,其啮合间隙一般不需调整。当啮合间隙增大到2.5mm时,应成对更换新齿轮。减速器的主、动被动圆锥齿轮间隙和轴承间隙不是越小越好,如果这些间隙调整的过小,会在工作中将润滑油膜挤破而造成摩擦发热而温度过高,甚至烧坏轴承或齿轮。若间隙过大,在工作中会产生冲击噪声,并可能因冲击而损坏零件。更重要的是轴承间隙过大时,会使被动圆锥齿轮离开正常啮合位置,从而使齿轮早期损坏。
⑷ 怎么样修复与调整减速器的间隙
减速机是驱动电机、齿轮箱组装而成的减速传动设备,齿轮箱内部结构由不同大小的齿轮组合而成,达到减速增距的效果。减速机齿轮间隙也称为齿轮精度、回程间隙(通常指行星减速机)其中对齿轮的要求尤其重要,齿轮加工中总是存在误差的,而齿轮精度(齿轮间隙)的高低直接影响整个减速电机的质量。减速机齿轮间隙精度直接影响工作效率,使用寿命,当齿轮间隙过大时,应当想办法调节齿轮间隙精度。
一、减速机齿轮间隙检测方法:
齿轮按照使用情况安装(实际使用时的中心距),固定其中一个齿轮不能转动。
方法一:用塞尺从端面塞齿廓间隙(可转动另一个齿轮),刚好能塞进的塞尺大读数就是齿侧间隙。
方法二:用百分表测头顶在活动齿轮齿廓中段附近,转动活动齿轮,表的读数就是端面侧隙。
二、齿轮间隙调整方法:
一般先在主动锥齿轮轮齿齿面上涂以红丹油(一种红丹粉与机油的混合物),然后用手使主动锥齿轮往复转动数圈,于是从动锥齿轮轮齿的两工作面上便出现红色印迹。
若从动锥齿轮轮齿正转和逆转工作面上的印迹位于齿高的中间偏于小端,并占齿面宽度的60%以上,则为正确啮合。正确啮合的印迹位置可通过主减速器壳与主动锥齿轮轴承座之间的调整垫片的总厚度(即移动主动锥齿轮的位置)而获得。
三、轴承间隙调整方法:
1.外装式端盖的减速机轴承间隙调整
此种方式结构简单,使用方便,在减速机中被广泛采用。
⑸ 减速机间隙如何调整
以下是对选用几种固定方法的减速机在调整轴承空隙的办法总结。
1 轴系两头固定方法
这种结构常选用端盖固定轴承外圈,结构简略,运用便利。在一般的齿轮减速机及轴承支承点跨距<300㎜的蜗杆减速机中较为常见。
1)外装式端盖的减速机轴承空隙调整
此种方法结构简略,运用便利,在减速机中被广泛选用。
外装式端盖固定的齿轮轴系结构:出厂时大多会在两头留有适量的轴向空隙,以确保轴承的灵敏运转及轴系零件的热伸长。此空隙一般在0.25㎜~0.4㎜范围内,否则会使翻滚体受载不均匀并引起较为严重的轴向窜动。因而要靠调整轴承空隙来确保必定的轴向空隙。在调整此种固定方法的轴系时,首要打开减速机的观察孔,看准齿轮的啮合状况后,再确定轴系是从哪个方向移动空隙。
假如确定高速轴向输入侧调整空隙,就要把高速轴的闷盖拆下,用深度游标卡尺测出轴承距端盖平面的深度记下;然后用撬杠类东西把轴系向输入侧移动,再测出闷盖端轴承距端盖平面的深度,两个深度尺度的差值便是轴承移动的量。把轴系移动好后,就在轴承孔上加上与移动量相等的垫片,最终装上闷盖。
待一切部件装配完后,悄悄盘动减速机,查看各轴滚动是否灵敏。若仍有卡阻,则可对加的垫片厚度适量减薄。直到把减速机各轴的滚动调整到灵敏。根据实际状况,还能够把装置于箱体上的轴承端盖进行切削加工,切削深度为轴承移动量或略大于移动量的0.20㎜。如切削深度大于端盖平面厚度的1/3,则因为端盖太薄,强度减弱,需求从头加工端盖。
对可调整空隙的向心推力轴承,可通过调整轴承由外圈的相对方位得到需求的轴承游隙。这种游隙一般比较小,以确保轴承刚性和削减噪声、振荡。对不行调空隙的轴承(如向心球轴承),可在装配时通过调整,使固定端盖与轴承外圈端面间留有适量的空隙,以容许轴系的热伸长。
在圆锥齿轮减速机中,关于悬臂的小锥齿轮的轴系,要求具有良好的刚性,并且能调整轴系的轴向方位,以达到两齿轮锥顶重合。因而常将整个轴系装于套环内而形成一个独立组件。套杯的肩起固定轴承的效果,凸肩不行过高,以利于轴承的拆开套杯凸缘及轴承端盖处都有垫片用来调整轴承空隙及调理轴系的轴向方位。
圆锥齿轮轴系选用向心推力轴承时,轴承有正装置和反装置两种安置方案。正装置的结构支点跨距较小,刚度较差,但用垫片完成调整比较便利。反装置的结构装置轴承不方便,用圆螺母调整比较麻烦,但支点跨距较大,刚性较好。当要求两轴承安置紧凑而有需求进步轴系的刚性时,常选用此种结构。
2)嵌入式端盖的减速机轴承空隙调整
主要是通过减速机自身的调整端盖来完成轴承空隙的调整,不用拆开减速机的零部件。某矿卷扬机选用的蜗轮蜗杆减速机蜗杆轴承空隙的调整形式。
在生产空隙时停机对减速机轴承空隙进行调整,假如能卸出输出端的负载,调整将更为准确,利用调整端盖上的调整螺栓进行调整,调好后,悄悄盘动减速机,查看各轴滚动是否灵敏。若仍有卡阻,则反复调整,直到把减速机各轴的滚动调整到灵敏、无显着轴向窜动为佳。
因为运用中各零件的彼此效果,使得固定轴承外圈(或内圈)的挡圈和端盖上压轴承外圈的台肩会发生必定量的磨损,这些不起眼的磨损,累加起来也会使轴系有很大空隙,也能导致轴系发生窜动。
值得注意的是与调整螺栓配套的嵌入压盖,与轴承外圈触摸的部分,有的减速机上该压盖触摸面过少,经常导致磨损敏捷,大大缩短了轴承空隙调整周期,解决的办法是:增加内压盖与轴承外圈的触摸面积(从头制造加工,加宽内压盖的轴承外圈压边),也能有用的延伸轴承空隙的调整周期,避免轴承的损坏。
当然,内压盖磨损还有其它的原因,比如轴承支承孔磨损严重,破坏了原有的合作公差,致使轴承走外圆(外圈在摩擦力效果下随轴承滚动)等。