1. 如何测出玻璃化转化温度和熔化温度
1.膨胀计法在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。2.折光率法利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。3.热机械法(温度-变形法)在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。4.DTA法(DSC)以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自由度的变化而呈现显着的变化,其中,热容的变化使热分析方法成为测定高分子材料玻璃化温度的一种有效手段。目前用于玻璃化温度测定的热分析方法主要为差热分析(DTA和差示扫描量热分析法(DSC和热机械法)。以DSC为例,当温度逐渐升高,通过高分子聚合物的玻璃化转变温度时,DSC曲线上的基线向吸热方向移动(见图)。图中A点是开始偏离基线的点。将转变前后的基线延长,两线之间的垂直距离为阶差ΔJ,在ΔJ/2处可以找到C点,从C点作切线与前基线相交于B点,B点所对应的温度值即为玻璃化转变温度Tg。热机械法即为玻璃化温度过程直接记录不做换算,比较方便。5.动态力学性能分析(DMA)法高分子材料的动态性能分析(DMA)通过在受测高分子聚合物上施加正弦交变载荷获取聚合物材料的动态力学响应。对于弹性材料(材料无粘弹性质),动态载荷与其引起的变形之间无相位差(ε=σ0sin(ωt)/E)。当材料具有粘弹性质时,材料的变形滞后于施加的载荷,载荷与变形之间出现相位差δ:ε=σ0sin(ωt+δ)/E。将含相位角的应力应变关系按三角函数关系,定义出对应与弹性性质的储能模量G’=Ecos(δ)和对应于粘弹性的损耗模量G”=Esin(δ)E因此称为绝对模量E=sqrt(G’2+G”2)由于相位角差δ的存在,外部载荷在对粘弹性材料加载时出现能量的损耗。粘弹性材料的这一性质成为其对于外力的阻尼。阻尼系数γ=tan(δ)=G’’/G’由此可见,高分子聚合物的粘弹性大小体现在应变滞后相位角上。当温度由低向高发展并通过玻璃化转变温度时,材料内部高分子的结构形态发生变化,与分子结构形态相关的粘弹性随之的变化。这一变化同时反映在储能模量,损耗模量和阻尼系数上。下图是聚乙酰胺的DMA曲线。振动频率为1Hz。在-60和-30°C之间,贮能模量的下降,阻尼系数的峰值对应着材料内部结构的变化。相应的温度即为玻璃化转变温度Tg。6.核磁共振法(NMR)温度升高后,分子运动加快,质子环境被平均化(处于高能量的带磁矩质子与处于低能量的的带磁矩质子在数量上开始接近;N-/N+=exp(-E/kT)),共振谱线变窄。到玻璃化转变温度,Tg时谱线的宽度有很大的改变。利用这一现象,可以用核磁共振仪,通过分析其谱线的方法获取高分子材料的玻璃化转变温度。
2. 高分子测分子量的方法都有哪些
分子测分子量的方法:
高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。
分子量检测方法:GPC 凝胶渗透色谱,飞行质谱法(Maldi-tof)
分子量测定仪器参数
GPC 流动相 :THF(四氢呋喃),H2O(水相),DMF( N,N-二甲基甲酰胺), 二氯甲烷,TCB(三氯苯)
检测方法:端基滴定法 冰点降低法 蒸汽压下降法(VPO) 膜渗透压法 。
检测仪器:核磁共振 流动分析仪/流动注射分析仪(FIA SFA CFA)
电容水分测定仪 电阻水分测定仪
红外水分测定仪 紫外可见分光光度计
红外光谱(IR、傅立叶) 气相分子吸收光谱仪(GMA)
3. 高分子材料性能测试的具体方法有哪些
高分子材料的性能有很多
力学性能可以用拉伸机,热学性能用DSC,DTA,TGA,DMA,结晶性能用XRD,NMR
含水可以用压差仪,粘度用流变仪或者乌氏,分子结构图谱用IR,拉曼,UV等
4. 高分子聚合物的定量分析方法有哪些
你也是学高分子的呀hhh……这个问题应该很容易在一本高物书里找答案
高分子的定量分析方法非常多,我只能举一些例子咯。比如测量分子量分布的光散射法、GPC;测量黏度的乌式粘度计;测量力学性能的提拉机;测量流变性能的流变仪;还有化学方法的话就是端基分析(比如滴定),TG-DTA等等
5. 简述熔点的测定原理
1.熔点测定基本原理
熔点定义:一个大气压下固体化合物固相与液相平衡时的温度
这时固相和液相的蒸汽压相等。每种纯固体有机化合物一般都有一个固定的熔点,即在一定压力下,从初熔到全熔(该范围称为熔程),温度不超过0.5~1℃。
熔点是鉴定固体有机化合物的重要物理常数,也是化合物纯度的判断标准。当化合物中混有杂质时,熔程较长,熔点降低。
纯物质的熔点和凝固点是一致的。
2.测定熔点的方法:
1)经典方法(提勒管法)
将试样装入熔点管中(见教材25页)。将干燥的粉末试样在表面皿上堆成小堆,将熔点管的开口端插入试样中,装取少量粉末。然后把熔点管竖立起来,在桌面上顿几下,使样品掉入管底。这样反复取样多次,最后使熔点管从一根长约40~50 cm高底玻璃管中掉到表面皿上,多重复几次,使样品粉末紧密堆积在毛细管底部。为使测量结果准确,样品一定要研地很细,填充要均匀且紧密。
载热体一般称为浴液,根据所测物质地熔点选择。一般用液体石蜡,硫酸,硅油等。
毛细管中的样品应位于温度计水银球的中部,可用乳胶圈捆好贴实(胶圈不要浸入溶液中),用有缺口的木塞作支撑套入温度计放到提勒管中,并使水银球处在提勒管的两叉口之间。
在下图中所示位置加热,载热体被加热后在管内呈对流循环,使温度变化比较均匀。
在测定已知熔点的样品时,可先以较快速度加热,在距离熔点15~20℃时,应以每分钟1~2 ℃的速度加热,直到测出熔程。在测定未知熔点的样品时,应先粗测熔点范围,再如上述方法细测。测定时,应观察和记录样品开始塌落并有液相产生时(初熔)和固体完全消失时(全溶)的温度读数,所的数据即为该物质的熔程。还要观察和记录再加热过程中是否有萎缩、变色、发泡、升华及炭化现象,熔点测定至少要有两次重复数据,每一次都要用新毛细管重新装入样品。
2)显微熔点仪测定熔点(微量熔点测定法)
该类仪器型号较多,共同特点是使用样品量少(2~3颗小结晶),可观察晶体再加热过程中的变化情况,能测量室温到300℃样品的熔点,其具体操作如下:
取两片干净且干燥的盖玻片将样品夹在中间,用手将样品撵碎,放在载玻片上将样品送入加热平台上,用手柄调节显微镜高度,直至可以清楚的看到晶体。打开控制器上加热开关,调节旋钮I和II使调节器上电压达到100,先让仪器快速升温,待温度升至距样品熔点值约差20℃左右时放慢速加热速度,控制温度上升速度为每分钟2℃左右。当样品结晶棱角开始变圆时,表示熔化已开始,结晶形状完全消失表示熔化已经完成,记录熔程。
测毕停止加热,稍冷,用镊子取出载玻片,将装有样品的盖薄片放在小烧杯中,将散热片放在加热台上,使其快速冷却,以便再次测试用。
6. 测定物质的熔点和沸点有哪些方法
要做实验测定!1、熔点的测定
化合物的熔点是指在常压下该物质的固—液两相达到平衡时的温度。但通常把晶体物质受热后由固态转化为液态时的温度作为该化合物的熔点。纯净的固体有机化合物一般都有固定的熔点。在一定的外压下,固液两态之间的变化是非常敏锐的,自初熔至全熔(称为熔程)温度不超过0.5-1℃。若混有杂质则熔点有明确变化,不但熔点距扩大,而且熔点也往往下降。因此,熔点是晶体化合物纯度的重要指标。有机化合物熔点一般不超过350℃,较易测定,故可借测定熔点来鉴别未知有机物和判断有机物的纯度。
在鉴定某未知物时,如测得其熔点和某已知物的熔点相同或相近时,不能认为它们为同一物质。还需把它们混合,测该混合物的熔点,若熔点仍不变,才能认为它们为同一物质。若混合物熔点降低,熔程增大,则说明它们属于不同的物质。故此种混合熔点试验,是检验两种熔点相同或相近的有机物是否为同一物质的最简便方法。
熔点装置图:
2、沸点的测定
液体的分子由于分子运动有从表面逸出的倾向,这种倾向随着温度的升高而增大,进而在液面上部形成蒸气。当分子由液体逸出的速度与分子由蒸气中回到液体中的速度相等,液面上的蒸气达到饱和,称为饱和蒸气。它对液面所施加的压力称为饱和蒸气压。实验证明,液体的蒸气压只与温度有关。即液体在一定温度下具有一定的蒸气压。
当液体的蒸气压增大到与外界施于液面的总压力(通常是大气压力)相等时,就有大量气泡从液体内部逸出,即液体沸腾。这时的温度称为液体的沸点。
通常所说的沸点是指在101.3kPa下液体沸腾时的温度。在一定外压下,纯液体有机化合物都有一定的沸点,而且沸点距也很小(0.5-1℃)。所以测定沸点是鉴定有机化合物和判断物质纯度的依据之一。测定沸点常用的方法有常量法(蒸馏法)和微量法(沸点管法)两种。 实验步骤
1、熔点的测定
毛细管法:
①准备熔点管:将毛细管截成6~8cm长,将一端用酒精灯外焰封口(与外焰成40o角转动加热)。防止将毛细管烧弯、封出疙瘩。
②装填样品:取0.1~0.2g预先研细并烘干的样品,堆积于干净的表面皿上,将熔点管开口一端插入样品堆中,反复数次,就有少量样品进入熔点管中。然后将熔点管在垂直的约40cm的玻璃管中自有下落,使样品紧密堆积在熔点管的下端,反复多次,直到样品高约2~3cm为止,每种样品装2~3根。
③仪器装置:将b形管固定于铁架台上,倒入液体石蜡做为浴液,其用量以略高于b形管的上侧管为宜。
将装有样品的熔点管用橡皮圈固定于温度计的下端,使熔点管装样品的部分位于水银球的中部。然后将此带有熔点管的温度计,通过有缺口的软木塞小心插入b形管中,使之与管同轴,并使温度计的水银球位于b形管两支管的中间。
④熔点测定:
粗测:慢慢加热b形管的支管连接处,使温度每分钟上升约5℃。观察并记录样品开始熔化时的温度,此为样品的粗测熔点,作为精测的参考。
精测:待浴液温度下降到30℃左右时,将温度计取出,换另一根熔点管,进行精测。开始升温可稍快,当温度升至离粗测熔点约10℃时,控制火焰使每分钟升温不超过1℃。当熔点管中的样品开始塌落,湿润,出现小液滴时,表明样品开始溶化,记录此时温度即样品的始熔温度。继续加热,至固体全部消失变为透明液体时再记录温度,此即样品的全熔温度。样品的熔点表示为:t始熔~t全熔。
实测:尿素(已知物,133~135℃)、桂皮酸(未知物,132~133℃),混合物(尿素-桂皮酸=1:1,100℃左右)。实验过程中,粗测一次,精测两次。
2、沸点的测定
微量法测定沸点:
①沸点管的制备:沸点管由外管和内管组成,外管用长7~8厘米、内径0.2~0.3cm的玻璃管将一端烧熔封口制得,内管用市购的毛细管截取3~4cm封其一端而成。测量时将内管开口向下插入外管中。
②沸点的测定:
取1~2滴待测样品滴入沸点管的外管中(思考题9),将内管插入外管中,然后用小橡皮圈把沸点附于温度计旁,再把该温度计的水银球位于b形管两支管中间,然后加热。加热时由于气体膨胀,内管中会有小气泡缓缓逸出,当温度升到比沸点稍高时,管内会有一连串的小气泡快速逸出。这时停止加热,使溶液自行冷却,气泡逸出的速度即渐渐减慢。在最后一气泡不再冒出并要缩回内管的瞬间记录温度,此时的温度即为该液体的沸点,待温度下降15~20℃后,可重新加热再测一次(2次所得温度数值不得相差1℃)。
按上述方法进行如下测定:CCl4沸点(76℃)。 注意事项
1.熔点管必须洁净。如含有灰尘等,能产生4—10OC的误差。
2.熔点管底未封好会产生漏管。
3.样品粉碎要细,填装要实,否则产生空隙,不易传热,造成熔程变大。
4.样品不干燥或含有杂质,会使熔点偏低,熔程变大。
5.样品量太少不便观察,而且熔点偏低;太多会造成熔程变大,熔点偏高。
6.升温速度应慢,让热传导有充分的时间。升温速度过快,熔点偏高。
7.熔点管壁太厚,热传导时间长,会产生熔点偏高。