1. 谐波测试仪器的工作原理
谐波测试仪Mavowatt 230
1、根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。因此将测量得到电流、电压等模拟信号转换为数字信号,再进行傅立叶分解,即可得到各阶次谐波大小、畸变率、相位等数据。
2、如图Mavowatt系列,这款产品电压谐波可以测到127次,电流谐波63次,在谐波测试仪中算比较高的。
3、功率分析仪也可以测谐波,LMG671最高可以到2000次。
2. 频谱分析仪如何测试二次谐波
设置中心频率为载波频率,设置合适的Span、RBW和参考电平,打开峰值marker,打开marker增量功能(个别频谱仪需要将参考marker固定),再设置中心频率至二次谐波频率,打开峰值marker,读marker增量读数即为二次谐波失真值。若看不到二次谐波,可能被本底噪声淹没,需要调小RBW值,降低参考电平并减小输入衰减值,从而降低本底噪声,使谐波显现。
3. 频谱分析仪测量谐波时,都出现了哪些频谱分量
无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。射频信号可能是已调信号或连续波信号。这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。现代频谱分析仪能利用本文中所述方法来进行这些测量。本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。
我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。按一定目的产生的频率最低的正弦波称为基频信号。其它正弦波则称为谐波信号。可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。
谐波常常是人们不希望存在的。在无线电发射机中,它们可能干扰射频频谱的其它用户。例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。因此,通常应对它们进行监控并将其减小到最低限度。
利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。
分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性:
V0=K1Vi+K2Vi2+K3V3i…………(1)
式中
V0=输出电压
Vi=输入电压
K1、K2和K3均为常数
利用上面的关系式,可以直接证明:输入电压加倍将引起Vi2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。类似类推,三阶谐波失真随输入电平按三次方规律增加。有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。
为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。图1示出这个过程的图解实例。从图中可以看出,对频谱分析仪只规定了二阶失真和三阶失真。而更高阶次的失真通常可忽略不计。
与技术指标有关的数据点1:1和2:1钭率进行予测
请注意,所关注的参数即三阶谐波失真不同于已规定的参数三阶互调失真(IMD3)。
在未被预选的频段内,三阶谐波失真应比微弱非线性的互调(IM)分量低9.5dB。这个关系可以由将对Vi的Acos(xt)+Bcos(yt)代人上面提到的(4)式,并将IM项如cos[(x-2y)t]与谐波项如cos(3xt)相比较来导出。若前端增益在基频与三次谐波信号之间变化,则将使IM与所观察的分析仪产生的谐波电平之间的关系有相同数量的变化。若三次谐波处在预选的频段内,则它将比规定的IM分量低得多,因为预选滤波器使基频信号不受前端非线性的影响。
从实验上判断分析仪是否会引人失真更加容易。仅仅增大输入衰减,观察失真电平是否发生变化即可。如发生了变化,则分析仪对测得的失真有影响。
尽管分析仪对测得的谐波的影响可以仅靠增大输入衰减来降低,但这会降低信噪比(SNR),从而限制了分析仪测量低谐波电平的能力。不过,对接近本底噪声的信号的测量可以通过对数平均方法来改善。
频谱分析仪可以通过对测量结果取平均来降低测量结果的变化。取平均的一种形式是对分析仪屏幕的若干条数据迹线进行平均。另一种形式是视频滤波。在完成取平均操作时,重要的是应知道取平均所在的幅度刻度。当视频滤波或迹线平均是对在对数刻度上显示的信号完成时,其结果是信号对数的平均。另一种方法是,取平均可以在线性(电压)刻度上完成。某些分析仪能在功率(有效值电压)刻度上取平均。基于快速傅里叶变换(FFT)的分析仪通常只能在功率刻度上取平均。
众所周知,对于上述三种刻度,测得的纯噪声电平是不相同的。其中,对数刻度的噪声被低估了2.51dB。无疑,对数刻度最适于测量低谐波电平,因为它能给出受本底噪声影响最小的信号电平。因此,应当使用对数刻度来测量谐波电平,并根据需要减小视频带宽或增加取平均数。
现实中并不存在上面所讨论的理想重复信号。与理想情况的两大偏离是漂移和调制。来自未锁定压控振荡器(VCO)的漂移信号可能造成测量困难。漂移可能是如此之大,以致为了测量某个谐波而必须对可能的整个频率范围扫描,并利用峰值检波器来测量谐波电平。对于频率的这种高变化性,取平均可能引起误差而不宜采用。此外,峰值检波特别适于检测噪声,所以,当用这种扫描——峰值检波方法进行测量时,分析仪的测量范围会受到损害。尽管如此,这类解决方案仍十分有用而被用于某些频谱分析仪中,如安捷伦科技公司的8560E系列,该系列频谱分析仪配备有该公司的85672A寄生响应测量应用程序。
已调信号也是一个测量难题。当信号被调制时,其谱宽增加。因此,必须使用足够宽的分辨带宽来对信号中的所有能量起响应。使用宽的带宽将增大本底噪声,从而减小可利用的动态范围。采用频率调制(FM)、脉冲调制(PM)和普通数字调制格式的信号谱宽与谐波数成正比增大,因此,建议针对谐波数来增大分辨带宽。
已调信号几乎总是锁相信号。因此,一种可能的解决方案是利用频率计数器仔细测量基频频率。然后,利用频谱分析仪的零频率间隔分析功能在预计的谐波上寻找所有谐波信号。零频率间隔分析(分析仪不进行扫描的工作方式)是最佳分析方式,因为它对所有扫描数据而不仅是峰值幅度进行平均。安捷伦科技公司的ESA系列频谱分析仪(图2)采用了零频率间隔的计数和平均解决方案,并具有按比例变化的分辨带宽。尽管这种解决方案不及扫描峰值检波解决方案完善,但它能很快取得离散很小的结果,且适于用调制源进行工作。
(dBc)和计算出的总谐波失真(THD)结果的数据表
所有谐波的幅度之和是音频产品中常用的一个品质因数。它也称为总谐波失真(THD)。总谐波失真是以功率相加而不是以电压相加为依据的。THD的定义为:
THD=100%×(nmaxn=2×E2n)0.5/Ef(2)
式中:
En=n次谐波电压
Ef=基频电压
nmax=被考察的最高谐波次数(在许多情况下,nmax限定到10。在另一些情况下,nmax是不超过20kHz的最高次谐波,即音频范围的上限)
上面讨论了可能进行平均的三种刻度即电压、对数或功率。应当注意THD测量结果与这几种刻度之间的关系。数据最好是按对数刻度进行采集和平均。THD的计算是按平方和的平方根(RSS)进行计算的,它与RMS或功率计算相关。但是,结果是由电压算出的,而百分比指的则是电压百分比。
总之,射频和音频谐波以及THD可以利用所述方法由频谱分析仪进行测量。在某些频谐分析仪中,为了加快测量速度,这些测量的实施已实现了自动化。
4. 大神,请问如何用示波器测谐波呢
利用示波器所做的任何测量,都是归结为对电压的测量。示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。这是其他任何电压测量仪器都不能比拟的。
1、直接测量法
所谓直接测量法,就是直接从屏幕上量出被测电压波形的高度,然后换算成电压值。定量测试电压时,一般把Y轴灵敏度开关的微调旋钮转至“校准”位置上,这样,就可以从“V/div”的指示值和被测信号占取的纵轴坐标值直接计算被测电压值。所以,直接测量法又称为标尺法。
(1)交流电压的测量
将Y轴输入耦合开关置于“AC”位置,显示出输入波形的交流成分。如交流信号的频率很低时,则应将Y轴输入耦合开关置于“DC”位置。
将被测波形移至示波管屏幕的中心位置,用“V/div”开关将被测波形控制在屏幕有效工作面积的范围内,按坐标刻度片的分度读取整个波形所占Y轴方向的度数H,则被测电压的峰-峰值VP-P可等于“V/div”开关指示值与H的乘积。如果使用探头测量时,应把探头的衰减量计算在内,即把上述计算数值乘10。
例如示波器的Y轴灵敏度开关“V/div”位于0.2档级,被测波形占Y轴的坐标幅度H为5div,则此信号电压的峰-峰值为1V。如是经探头测量,仍指示上述数值,则被测信号电压的峰-峰值就为10V。
(2)直流电压的测量
将Y轴输入耦合开关置于“地”位置,触发方式开关置“自动”位置,使屏幕显示一水平扫描线,此扫描线便为零电平线。
将Y轴输入耦合开关置“DC”位置,加入被测电压,此时,扫描线在Y轴方向产生跳变位移H,被测电压即为“V/div”开关指示值与H的乘积。
直接测量法简单易行,但误差较大。产生误差的因素有读数误差、视差和示波器的系统误差(衰减器、偏转系统、示波管边缘效应)等。
2、比较测量法
比较测量法就是用一已知的标准电压波形与被测电压波形进行比较求得被测电压值。
将被测电压Vx输入示波器的Y轴通道,调节Y轴灵敏度选择开关“V/div”及其微调旋钮,使荧光屏显示出便于测量的高度Hx并做好记录,且“V/div”开关及微调旋钮位置保持不变。
去掉被测电压,把一个已知的可调标准电压Vs输入Y轴,调节标准电压的输出幅度,使它显示与被测电压相同的幅度。此时,标准电压的输出幅度等于被测电压的幅度。比较法测量电压可避免垂直系统引起和误差,因而提高了测量精度。
(4)发射机谐波的测量方法扩展阅读
危害
1)对旋转的发电机、电动机而言,由于谐波电流或谐波电压在定子绕组、转子回路及铁心中产生附加损耗,从而降低发电、输电及用电设备的效率。更为严重的是,谐波振荡容易使汽轮发电机产生振荡力矩,可能引起机械共振,造成汽轮机叶片扭曲及产生疲劳破坏。
2)谐波电压在许多情况下能使正弦波变得更尖,不仅导致电机、变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。
谐波电流能使变压器的铜耗增加,所以电机、变压器在严重的谐波负载下将产生局部过热、振动和噪声增大、温升增加,从而加速绝缘老化、缩短变压器等电气设备的使用寿命、浪费日趋宝贵的能源、降低供电可靠性。
3)由于电机、变压器、电力电容器、电缆等负载处于经常的变动之中,极易与电网中含有的大量谐波源构成串联或并联的谐振条件,形成谐波振荡,产生过电压或过电流,危及电机、变压器等负载及电力系统的安全运行,引发输配电事故的发生。
4)电网谐波将使测量仪表、计量装置产生误差,达不到正确指示及计量。断路器开断谐波含量较高的电流时,断路器的开断能力将大大降低,造成电弧重燃,发生短路,甚至断路器爆炸。
5)另外,由于谐波的存在,易使电网的各类保护及自动装置产生误动或拒动以及在通信系统内产生声频干扰,严重时将威胁通信设备及人身安全等。
参考资料来源:网络-示波器
参考资料来源:网络-谐波
5. 示波器谐波分析的测试步骤是什么呢
一般在示波器math功能里面,有个FFT分析,可以分析波形的频域信息。
6. 如何测量谐波的频率
可以用示波器测量信号在进行FFT运算,找到需要计算的N次谐波位置即可算出频率
如下图红色直方图就是对示波器的校准方波进行FFT(快速傅里叶变换)以后的样子。从红色直方图中可以看出,频率为0Hz的信号成分电压为0,代表该信号不含有直流成分。而第一根红线就是该信号的基波,其频率为1KHZ,幅值为896.6mV。通过X轴光标X1和X2的差值,我们发现第五条直线的频率为9KHz,是基波的9倍,那就是九次谐波。通过Y轴光标Y1和Y2的差值,我们可以得知该次谐波的幅值为104mv。
7. 频谱分析仪谐波失真的测量方法有哪些
一种是以正弦信号输入待测设备,然后分析设备响应信号的频率成分,可以得到谐波失真。另一种更简单的测量方法是首先利用带阻滤波器滤除响应信号中的基频成分,然后直接测量剩余信号的电压,将其与原响应信号作比较,就可以得到谐波失真。
8. 谐波含量的处理测量
D1 谐波电压(或电流)测量应选择在电网正常供电时可能出现的最小运行方式,且应在谐波
源工作周期中产生的谐波量大的时段内进行(例如:电弧炼钢炉应在熔化期测量)。
当测量点附近安装有电容器组时,应在电容器组的各种运行方式下进行测量。
D2 测量的谐波次数一般为第2 到第19 次,根据谐波源的特点或测试分析结果,可以适当
变动谐波次数测量的范围。
D3 对于负荷变化快的谐波源(例如:炼钢电弧炉、晶闸管变流设备供电的轧机、电力机车
等),测量的间隔时间不大于2min,测量次数应满足数理统计的要求,一般不少于30 次。
对于负荷变化慢的谐波源(例如:化工整流器、直流输电换流站等),测量间隔和持续时
间不作规定。
D4 谐波测量的数据应取测量时段内各相实测量值的95%概率值中最大的一相值,作为判断
谐波是否超过允许值的依据。
但对负荷变化慢的谐波源,可选五个接近的实测值,取其算术平均值。
注:为了实用方便,实测值的95%概率值可按下述方法近似选取:将实测值按由大到
小次序排列,舍弃前面5%的大值,取剩余实测值中的最大值。
D5 谐波的测量仪器。
D5.1 仪器的功能应满足本标准测量要求。
D5.2 为了区别暂态现象和谐波,对负荷变化快的谐波,
每次测量结果可为3s 内所测值的平均值。推荐采用下式计算:
() U
m
U h hk
k=1
m
= ∑ 1 2
(D1)
式中Uhk——3s 内第k 次测得的h 次谐波的方均根值;
m——3s 内取均匀间隔的测量次数,m≥6。
D5.3 仪器准确度
谐波测量仪的允许误差见表D1。
表D1 谐波测量仪的允许误差
等级被测量条件允许误差
电压
Uh≥1%UN
Uh<1%UN
5%Uh
0.05%UN
A
电流
Ih≥3%IN
Ih<3%IN
5%Ih
0.15%IN
电压
Uh≥3%UN
Uh<3%UN
5%
Uh0.15%UN B
电流
Ih≥10%IN
Ih<10%IN
5%Ih
0.50%IN
注:①UN 为标准电压,Uh 为谐波电压;IN 为额定电流,Ih 为谐波电流。
②A 级仪器频率测量范围为0~2500Hz,用于较精确的测量,仪器的相角测量误差不大
于±5°或±1°;B 级仪器用于一般测量。
D5.4 仪器有一定的抗电磁干扰能力,便于现场使用。仪器应保证其电源在标称电压±15%,
频率在49~51Hz 范围内电压总谐波畸变率不超过8%条件下能正常工作。
D6 对不符合D5.2 条规定的仪器,可用于负荷变化慢的谐波源的测量。如用于负荷变化快
的谐波源的测量,测量条件和次数应分别符合D1 条和D3 条的规定。
D7 在测量的频率范围内,仪用互感器、电容式分压器等谐波传感设备应有良好的频率特性,
其引入的幅值误差不应大于5%,相角误差不大于5°。在没有确切的频率响应误差特性时,
电流互感器和低压电压互感器用于2500Hz 及以下频率的谐波测量;6~110kV 电磁式电压
互感器可用于1000Hz 及以下频率测量;电容式电压互感器不能用于谐波测量。在谐波电压
测量中,对谐波次数或测量精度有较高需要时,应采用电阻分压器(UN<1kV=或电容式分
压器(UN≥1kV)。