Ⅰ 如何控制好工程测量的精度
1引言
现今,我国城市化进程加速,国际承包业务逐渐成熟。在这样一个大环境下,我国的建筑行业有着广阔的发展天地和美好的前景。但是随着建筑项目的成熟,其要求也会越来越严格。建筑施工测量精度对一个建筑项目
的好坏息息相关。笔者将就建筑施工测量精度控制的方法进行分析。
2施工测量概述
施工测量就是各项工程在施工阶段所进行的测量工作。施工测量的基本任务是施工测量(也称为放样)。根据施工图,并且按照施工和设计的要求,在实地标定出设计好的建筑物的形状、位置、高程以及大小等。施工
测量工作是施工的重要部分,测量精度的高低直接影响了施工质量的好坏。施工测量始终贯穿于建筑物施工阶段的整个过程:在准备阶段时,需将场地进行平整,把图上设计建筑物的位置测设到地面上;在施工期间,对开
挖基槽、砌筑基础和墙身等等,一定要精确标定轴线和标高;在施工以及运营中,要对建筑物的构件安装与机器设备安装,作轴线的定位和安装高程的测量进行变性观测,及时检查沉降情况。
3施工测量的精度控制方法
3.1建筑施工中的放样方法以及对测量精度分析
在施工过程中,放样点位的方法要灵活选择,根据实际情况和限制选择适当地方法。但是这样的基本元素是距离和角度。
3.1.1测量角度的放样方法的精度分析
测量角度的放样方法的精度分析主要需要注意以下几点:测量经纬仪数据中的误差为m中,目标数据的偏心误差是m偏,则测量仪器的误差为m仪,测量数据角度本身所具有误差为m本,因为外界因素影响的误差是m外,那
么:m中=m偏=m仪≤0.15mβ,m本=m外≤0.63mβ。
3.1.2测量距离的放样方法的精度分析
每项的测量所得的偶然误差和测量系统的误差的不同影响,而将用m偶和m系来代表他们,但是测量所得的数据不可以超过以下数值:m偶≤0.45ms/n,m系≤0.15ms/n。在该式中,n是测量尺段数。
另外,在通过测距仪进行测量间距时,生产厂家一般都会给下列线性表达式ms=a+b×10-6×S。随着测量器的全站仪在建设工程中的广泛使用,坐标放样法变得非常简便。另外,在公式mp=±√[ms2+s2(mβ/p)]的计算
中我们不难发现,放样点位的误差其实是和测量边长的误差、测量角度的误差以及测量点到测量放样点之间的间距有关系的。
3.2建筑施工的控制网的测量精度分析
建筑测量任务的第一步就是组建施工控制网。组建施工控制网是按照控制网中的控制点,根据设计图纸的具体要求进行非建筑物中的主轴线测量具体的数据。然后根据其余的部位位置根据几何公式和标尺进行分别测
量。控制网的精确决定了下一步测量工作结果的好坏,起到了关键作用。我们要先分析控制网的测量,以此来判定它是否满足测量限差。比如,假定工程建筑物所对的轴线限差为△,建筑物所对的轴线中定位的误差m,是
建筑物所对的轴线中的定位误差允许为(△)的一半,即:m=+△/2(5)。一般,在建筑施工测量的过程中,轴线中的定位误差m包括建筑施工的误差m测与建筑工程测量的误差m施两大部分,即m2=m。保证建筑施工中的测量
任务就是确保建筑物中的工程质量。大多情况下,在建筑施工过程中,建筑施工的方法和现场工作条件会受到一定的限制。达到一个精确的测量度是一件很难的事情。我们只有通过合适的测量方法和适当地测量措施,才能
有把握保证测量中出现的误差在我们所规定的计划范围之内。故我们可以将测量的误差值取为建筑施工中的误差的1/2,即:m测=1/2m施。最终可以测到m测=m/3。相比建筑施工放样方法来说,建筑工程控制测量方法要
有更多的时间来进行测量。对于观测的具体条件倒是没有什么限制,同时也能够对所得的观测数据施行平差的处理方法,因此,得到的控制误差要比放样误差小一点。经过对放样误差的处理,我们也可以忽略不计,因此
取:m放=√2m控。经过推导最终得出m控=m/3=△/6。建筑施工物的性质和建筑施工物的规模影响了建筑物测量限差取值的差异。
3.3控制网在施工等级最低时确定精度分析
在进行控制网的施工等级最低时确定精度分析时,要根据现场的具体条件、施工设计的精度和测量仪器设备进行控制网的设计。只有这样,才能保证控制网形式的布设,保证控制网的稳定性、经济实用性、灵活性以及
精度。同样,只有分析在施工中的控制网精度值,才能得出施工中的放样。对控制点的测量精度一定要严格要求,控制网在施工等级的最低精度就是根据这个而来的,只有这样,才能得出精确的控制点。相对一些等级最低
的施工控制网之中的相邻的点位的精度,则包括了相邻点的测量边长的误差和测角之间的误差。相邻点位测量精度公式为:mγ=(ms/s)2s2+(mβ/ρ)sγ2。
4建筑施工控制网络的布置原因及特点分析
4.1建筑施工控制网络的布置原因
4.1.1位点的密度和位置,不能满足于施工要求的勘测阶段所建立的测图控制网
这是因为它的目的是为测图而服务的。因此,点位的选择应该根据地形的实际条件来确定,它不能只考虑建筑物的整体布局,所以在点的分布和其密度方面不能满足施工放样的所有要求,更何况有的控制点可能遭到毁
坏或者不靠谱。
4.1.2精度上不能满足施工的要求
测图比例尺的大小确定了测图控制网的精度的大小。而工程的性质又确定了建筑施工网的精度。它一般比测图控制网的精度高。因此,我们要以此来建立旌工的网络。这对工程的结果很重要。
4.2施工控制网络的特点
4.2.1控制点控制范围小、密度大,精度要求较高。
如果工程施工区比测区较小,控制网的控制范围也会随之较小。一般来说,勘测的面积是厂区面积的1.3至1.5倍,再加上水源、实际弃碴场等,勘测面积能达到厂区面积的2至3倍,有的甚至可以达到10倍。施工图的
主要任务就是放样建筑物的轴线,因为这些轴线,其偏差值都有一定的范围。
4.2.2使用次数过多
一般在施工过程中,控制点常常直接用于放样,忽略了很多重要步骤,不利于建筑工程的总体效果。
4.2.3建筑施工控制网络受施工的干扰因素影响较大
在现代工程的施工中,经常会采用立体交叉同时作业的方法,使得施工高度相差太大,对于控制点阃的通视不利,而且一些机械设备也会在施工测量中挡住施工人员视线等等。
因此,控制点位应该进行恰当地分布,密度也要尽量大些,以便施工人员在工作中有所选择。
4.2.4投影面选择灵活
在投影面选择的这一方面,灵活性很高。因为施工放样所应用的是控制点间的实际间距,所以施工网的基线不用投影在平均海水面上,这样就可以避免麻烦。
5确定施工网精度的原则
在建筑施工阶段,测量工作直接为施工服务,测量工作的耩度,则主要体现在相邻柱点的相对位置上。对各种不同的建筑物中的各个不同部分,这些精度要求并不完全相同。施工网精度的确定,应该从各种建筑物放样
的精度要求来进行考虑。对某些建筑元素来说,虽然它们之间相对位置的精度要求高,但可利用它们之间的几何联系进行放样。因此在考虑控制网的精度时,可忽略它们。在确定了精度要求之后,就可用它来推算控制网
的必要精度.此时,必须要根据控制网布设的情况和放样的条件来考虑一下控制网误差与细部放样误差的不利关系,只有这样才能更合理的确定施工网的精度。
Ⅱ 地面高程控制测量
(一)水准测量
1.基本要求
测区地面高程控制网可采用水准测量和测距高程导线法建立,水准测量分为三等、四等,测距高程导线可以代替四等水准。测区控制网一般采用水准测量方法建立。其范围等级选择应符合表4-17的规定。
表4-17 测区控制网水准等级选择要求
测区地面高程首级控制网应布设成环形网,也可以与平面控制一起考虑。加密时布设成附合线或结点网,只有在山区才允许布设支线水准。各等水准网中最弱点的高程中误差相对起算点不大于±2.5厘米。
水准测量的主要技术要求按表4-18规定。计算水准点互差时,L为水准点间路线长度;计算环线、附合路线闭合差时,L为环线或水准路线总长度。L单位都以千米计算。n为测站数。水准支线不应大于附合路线总长度的1/3。
水准测量观测的技术要求应附合表4-19规定。
表4-18 水准测量的主要技术要求
表4-19 水准测量观测技术要求
三等、四等使用严密平差程序,当水准路线的环线超过20个时,水准按路线(环线)闭合差计算的每公里全中误差 MΔ≤20 毫米,计算按城市测量规范 MW=
三等水准观测顺序为后-前-前-后,四等水准为后-后-前-前,等外水准为后-后-前-前,三等水准往测、返测均使用偶数站。使用电子记簿应打印原始观测值。
三、四等水准测量记录手簿见附录D,等外水准测量记录手簿见附录E。
特殊情况:当地一、二、三等水准点基本破坏,矿区以非煤露天采矿权为主的地区,本次实地核查所做的控制点只满足矿业权核查和矿政管理的需要,可以不作水准联测,直接使用四等水准或等外水准进行高程拟合。精度放宽到最弱点高程中误差不大于±0.25米,以2倍中误差作为最大误差,极端情况超过3倍中误差的点,不使用,不提供高程,不超过总点数的1/10。此类控制点不与其他部门共享。
2.测距高程导线
代替四等水准的光电测距高程导线,应起闭于不低于三等的水准点上,其边长不大于1千米。高程导线的最大长度不超过四等水准路线的最大长度。
高程导线边长的测定,应采用不低于Ⅱ级的测距仪或全站仪,往返观测各1测回,读数4次。1测回读数较差不大于10毫米,每站应读取气温和气压值,使用全站仪时,气象常数可以安置在仪器上。垂直角测回差和指标差较差均不大于7″,对向观测高差较差不大于
高差计算时,观测距离应施加加常数和乘常数改正、气象改正。
气象改正采用仪器厂方提供的参数和计算公式,并已预先设定,观测时输入温度和气压值,仪器自动改正。加常数和乘常数采用仪器鉴定的数据进行改正。
每点设站时,相邻测站间单向观测高差h按下式计算:
全国矿业权实地核查技术方法指南研究
式中:h为高程导线边两端点的高差(米);
Di为经过气象改正的平距(米);
k为大气折光系数(一般取0.11~0.14,如不符可采用实验值);
R0为地球平均曲率半径,一般采用6369000米。可根据各地纬度和投影面计算;
i为仪器高(米);
v为觇标高(米);
Zi为观测垂直角(″)。
相邻测站间对向观测高差中数h12按下式计算:
H12=(h1-h2)/2
由测距高程导线测定的水准点或其他固定点的高差,应加入正常水准面不平行改正,计算方法与四等水准测量相同。
每点设站高程导线测量限差按表4-20规定。
表4-20 测距高程导线测量限差
随着测量仪器的进步,三角测量的方法一般不宜采用,对于原有的控制网使用三角高程测量的成果视为合理,精度达到现行标准的可以使用。
测距高程导线观测手簿格式见附录F。
(二)似大地水准面精化
我国已有CQ G2000似大地水准面模型,华东、华中、华南、华北和部分省区的格网平均重力异常分辨率已达到2.5′×2.5′密度,山区也可以达到5′×5′。能够满足矿业权实地核查控制点精度的要求。需要说明的是,使用似大地水准面精化的关键是必须有准确大地高,而WGS-84的大地高用无约束平差的结果是不行的,因为普通单点定位精度很差,大地高误差在10米以上,而似大地水准面模型也仅仅是知道位置、大地高,才能知道高程异常和正常高。因此,如需做似大地水准精化必须在WGS-84中作三维约束平差,如果收集不到WGS-84的起始点,是不能做的。
(三)拟合高程
GPS测量是在WGS-84地心坐标系进行的,它提供的高程是大地高H,而水准测量是以水准原点为基准,相对于平均海平面海拔高h。由于采用GPS观测所得到的是大地高,为了确定出正常高,必须知道高程异常数据。也就是说要知道周边点的水准高和大地高,利用一定的数学模型得到整个控制网的正常高。似大地水准面到参考椭球面的距离,称为高程异常,记为ζ。大地高与正常高之间的关系可以表示为:H=Hr+ζ。所谓高程拟合法就是利用在范围不大的区域中,高程异常具有一定的几何相关性这一原理,采用数学方法,求解正常高或高程异常。
将高程异常表示为下面多项式的形式:
零次多项式:ζ=a0
一次多项式:ζ=a0+a1·dB+a2·dL
二次多项式:ζ=a0+a1·dB+a2·dL+a3·dB2+a4·dL2+a5·dB·dL
(1)适用范围。上面介绍的高程拟合的方法,是一种纯几何的方法,因此,一般仅适用于高程异常变化较为平缓的地区(如平原地区),其拟合的准确度可达到一个分米以内。对于高程异常变化剧烈的地区(如山区),这种方法的准确度有限,这主要是因为在这些地区,高程异常的已知点很难将高程异常的特征表示出来。
(2)选择合适的高程异常已知点。所谓高程异常的已知点的高程异常值一般是通过水准测量测定正常高、通过GPS测量测定大地高后获得的。在实际工作中,一般采用在水准点上布设GPS点或对GPS点进行水准联测的方法来实现,为了获得好的拟合结果要求采用数量尽量多的已知点,它们应均匀分布,并且最好能够将整个GPS网包围起来。
(3)高程异常已知点的数量。若要用零次项进行高程拟合时,要确定1个参数,因此,需要1个已知点。若要采用一次多项式进行高程拟合,要确定3个参数,需要3个以上的已知点。若要采用二次多项式进行高程拟合,要确定6个参数,则需要6个以上的已知点。我们要求“进行高程拟合,一般起算点应不少于6个,50平方千米应有一点”。点位应分布于测区的四周最好中间有一点。最少不得少于3个。起算点的高程等级,最低是等外水准,三角高程不能作为起算点。
(四)特殊情况
西部地区矿业权分布分散,控制点稀少,有的需要一个矿作为一个小测区。要检查已知点困难,做水准没有起算水准点,只有少数几个控制点带有水准高。可以利用无约束平差的基线详解来解决这个问题,点位下沉、位移会引起控制点间的边长,高差变化,详解中的大地高不对,但是它的高差是对的,基线边长的比例是对的,因为小范围内高程异常的值是相等的。利用解算的基线详解中的基线高差和基线边长,可以进行水准平差,如果符合水准要求则可以证明起算点是对的,还可以求出个点的正常高。这样可以解决小测区起算点检查和高程拟合点不足的问题。
Ⅲ 高速铁路桥梁三角网控制测量时,当水平角观测限差超限时应怎么办
按超限从大到下依次为检查原始数据、找粗差、重测、对比再平差。。。。
Ⅳ 跪求控制网的测量方法!
1,由测量精度决定测量精度和方法。
2.布设控制点。
3.进行测量,在每个点上进行测角夹角和测量各点间的距离,记录观测原始数据。注意各项限差。
4.进行整理,得出各点间的夹角和距离。
5.进行导线平差。得出各点的坐标。和控制网的精度。
Ⅳ 在地面控制测量中,测回法测角,都有哪些限差要求什么2c值半侧回归零差不是方向观测法才要检验吗
测回法观测限差要求参照方向法观测。
2c值是视准误差的两倍,因视准轴不垂直于横轴而产生,2c=盘左读数—(盘右读数±180°),2c值本身为一常数,各方向的2c值得变化是观测误差引起的,2c值可作为观测质量检查的一个标准。
半测回归零差=起始方向归零读数 - 起始方向初始读数。
在进行导线网布设时,连接角采用测回法进行观测,并且至少两个测回。
涉及到测绘,就一定要考虑到检验!!!
Ⅵ 怎样减少水准仪测量误差 减少水准仪测量中误差的有效
减少水准仪测量误差,需要做到以下几点:
正确的使用方法。例如:采用标准的标尺、尺垫。选择合适的线路和适宜的天气等。
规范的操作流程。例如:仪器整平、限差的控制、前后视距控制、扶尺的标准化。
操作人员的固定。高等级水准线路测量中,尽可能不要随便换人(仪器操作员、扶尺人员)
Ⅶ 铺轨基标测量限差要求的控制基标建筑工程介绍
铺轨基标测量限差要求的控制基标?以下中达咨询带来关于铺轨基标测量限差要求的控制基标,相关内容供以参考。
根据《地下铁道、轻轨交通工程测量规范》要求:控制基标在直线线路每120m设置一个,曲线线路除曲线元素点设置控制基标外,应每60m设置一个控制基标。
控制基标埋设完成后,对其进行检查,检测内容、方法与各项限差应满足下列要求:
①检测控制基标间夹角时,其左、右角各测两测回,距离往返观测各两测回;
②直线段控制基标间的夹角与180度较差应小于8″,实测距离与设计距离较差应小于10mm;曲线段控制基标间夹角与设计值较差计算出的线路横向偏差应小于2mm,弦长测量值与设计值较差应小于5mm;
③在施工控制水准点间,应布设附合水准路线测定每个控制基标的高程,其实测值与设计值较差应小于2mm;
④经检测控制基标满足各项限差要求后,应进行永久固定。
更多关于标书代写制作,提升中标率,点击底部客服免费咨询。