A. 测量系统分析有哪几种分析方法
五种分析:
1、偏倚(Bias):测量结果的观测平均值与基准值的差值。
2、稳定性(Stability):测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。
3、重复性(Repeatability):由同一位检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。
4、再现性(Reproctivity) :由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。
5、测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。
(1)智能光学测量分析系统使用方法扩展阅读:
MSA使用数理统计和图表的方法对测量系统的分辨率和误差进行分析,以评估测量系统的分辨率和误差对于被测量的参数来说是否合适,并确定测量系统误差的主要成分。测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征。
测量系统分析已逐渐成为企业质量改进中的一项重要工作,企业界和学术界都对测量系统分析给予了足够的重视。
B. 测量系统分析方法有哪些
“计量型”测量系统分析通常包括偏倚(Bias)、稳定性(Stability)、线性(Linearity)、以及重复性和再现性(Repeatability&Reprocibility,简称R&R)。在测量系统分析的实际运作中可同时进行,亦可选项进行,根据具体使用情况确定。
C. 光谱分析仪的使用方法
使用方法:开机步骤
1、开光谱仪电源
2、开计算机电源
3、在文件管理器中用鼠标指按UV WinLab图标,此时出现UV WinLab的应用窗口,仪器已准备好,可选用适当方法进行分析操作。
一、方法:在分析中必须对分光光度计设定一些必要的参数,这些参数的组合就形成一个“方法”。Lambda系列UV WinLab软件预设四类常用方法。
1)扫描(SCAN),用以进行光谱扫描。
2)时间驱动(TIME DRIVER),用以观察一定时间内某种特定波长处纵坐标值的变化,如酶动力学。
3)波长编程(WP)用以在多个波长下测定样品在一定时间内的纵坐标值变化,并可以计算这些纵坐标值的差或比值。
4)浓度(CONC)用以建立标准曲线并测定浓度。
2.1 进入所需方法,在方法窗口中选择所需方法的文件名。
二、方法的设定
扫描、波长编程及时间驱动各项方法可根据显示的参数表,逐项按需要选用或填入,并可参考提示。
浓度
浓度方法窗口下方标签较多,说明做浓度测定时需要参数较多。用鼠标指按每一标签,可翻出下页,其上有一些需要测定的参数。必须逐页设定。
三、工具条
1)SETUP
当所需的各项参数都已在参数中设好后,必须用鼠标指按SETUP,才能将仪器调整到所设状态。
2)AUTOZERO 用鼠标指按此键,分光光度计即进行调零(在光谱扫描中则进行基线校正)。
3)START 用鼠标指按此键,光度计即开始运行所设定的方法。
四、方法运行
1)扫描,时间驱动,波长编程方法选好后,先放入参比溶液,按AUTOZERO键,进行自自动校零或背景校正结束后再放入样品,按START,分光光度计即开始进行,同时屏幕上出现图形窗口,将结果显示出来。
2)浓度
3)制订标准曲线
(1)方法选好后,确认各项数据正确,特别是REFS页中第一行要选中右上角的“edit mode”。再放入参比溶液,按AUTOZERO键自动校零或背景校正。
(2)按setup,待该图标消失后,再按“start”,按提示依次放入标准色列的各管溶液,每次都按提示进行操作。
(3)标准色列测定完毕后,屏幕上出现calibgraphwindow,显示拟合的标准线,并标出各项标准管的位置,屏幕下方还有一条ConcentraTIon mode的对话框,可以用来修改拟合的曲线类型(按 change calbraTIon),或修改标准溶液的任何一管(replace),或取消某一管(delete),或增加标准溶液管数(add)。如过已经满意,则按analyse sample键,进入样品测定窗口。
(4)标准曲线有关的各项数据,均在calibresultwindow中,可用鼠标将其调出观察。其中包括每个标准溶液的具体数据,标准曲线的回程方程式,相关系数,残差。
五、样品浓度测定
刚制定好的标准曲线接着进行样品浓度测定时
1)只需在concentraTIon mode对话框按analyse sample键,进入样品测定窗口。
2 )按设定的样品顺序放入各样品管,每次按提示进行操作。
3 )屏幕上出现结果窗口,结果数据将依次显示在样品表中的相应位置。
(1)利用原有的标准曲线接着进行样品浓度测定时
(2)调出所测定样品的浓度方法文件,首先调出refs页,将原设edit mode选项取消,改设左上角的using exiting calibration。重新将方法存盘,则今后再调用时即不需再作修改。
(3) 在sample页中按要求重设各种样品名称机样品信息。
(4)按工具条中setup键,将主机设到该方法所设定的条件。
(5)将参比溶液放入比色室,按autozero键做背景校零。
(6) 按start键,按设定的样品顺序放入各样品管,每次按提示进行操作。
(7) 屏幕上出现结果窗口,结果数据将依次显示在样品表中相应位置。
六、关机
1)将方法及数据存盘
2)关闭方法窗
3)退出UV WinLab
4) 取出样品及参比溶液
5)清洁光谱仪,特别是样品室
6)关闭光谱电源
7)关闭计算机电源
根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。经典光谱仪器是建立在空间色散原理上的仪器:新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道OMA(Optical Multi-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理,存储诸功能于一体。由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率:使用OMA分析光谱,测盆准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出.目前,它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测。
光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。
物理原理
任何元素的原子都是由原子核和绕核运动的电子组成的,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。
能量最低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。
如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。
电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10^-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。
D. 激光测距仪的使用方法是什么
使用方法如下:
调节测距仪目镜视度,使视场内的物体清晰。
按‘ON/ADJUST'按钮,镜内显示‘+’,将中心圆对准待测目标(不能为强吸收光线的目标如玻璃),‘MODE’一般置于标准状态,再次持续按下‘ON/ADJUST'按钮3秒钟左右,目标距离显示,若不适用15秒后自动关机。
每按‘MODE’按钮一次,即可改变模式。接通电源时,处于上一次的使用模式。
E. GRR 是什么怎么做
Gauge Repeatability and Reprocibility的缩写,意思是测量系统的重复性和复现性,需要在相同的归零条件下,在短时间内取得数据。
为计算重复性(Repeatability),在其取得数据时应符合下列条件:同一人员、相同的归零条件、同一产品、同一位置、同样的环境条件、数据要在短时间内取得。
重复性的目的只是要获知设备的变异性。
再现性(Reprocibility)则希望获知不同条件下的变异,因此取得数据时应符合下列条件:不同的人员、相同的归零条件、相同的位置、相同的环境、数据宜在较长期间内取得
1、测量系统分析:指检测测量系统以便更好地了解影响测量结果的变异来源及其分布的一种方法。通过测量系统分析可把握当前所用测量系统有无问题和主要问题出在哪里,以便及时纠正偏差,使测量精度满足要求。
量具可重复性与可再现性分析(GR&R):Gauge Repeatability and Reprocibility。
2、测量系统:操作、零件、评价人、测量工具、设备的集合(整个获取测量结果的过程)。
3、通常用以下程序来评价测量系统:
偏倚:测量结果的观测平均值与基准值的差值。偏倚常被称为“准确度”。
基准值:也称为可接受的基准值或标准值,是充当测量值的一个一致认可的基准,一个基准值可以通过采用更高级别的测量设备进行多次测量,取其平均值来确定。
重复性:由一个评价人,采用同一种测量仪器,多次测量同一零件的同一特性时获得的测试值变差。
再生性:由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。
稳定性:是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
线性:在量具预期的工作量程内,偏倚值的差值。
4、总体说来,以上这些程序有时被称为“量具R&R”程序,这是因为它们常常只是用来评价再现性和重复性这两项统计特性。
重复性:测量过程的重复性意味着测量系统自身的变异是一致的。由于仪器自身以及零件的食品中位置变化导致的测量变差是重复性误差的两个一般原因。
再现性:测量过程的再现性表明评价人的变异性是一致的。考虑评价人变异性的一种方法是认为变异性代表每位评价人造成的递增偏倚。如果这种偏倚或评价人的变异性真正存在,每位评价人的所有平均值就将会不同,这可以通过比较评价人对每个零件的平均值看出。
以上内容参考:网络-grr、网络-GR&R
F. 测量系统分析方法有哪几种(系统分析的方法有哪些)
1、测量系统分析方法有哪几种。
2、系统分析方法有哪几种。
3、系统分析方法有哪些。
4、几种常用的系统分析方法有( )。
1.系统分析方法有三种:系统特征分析方法。
2.系统逻辑分析方法。
3.系统工程技术。
4.系统分析是一种研究方略,它能在不确定的情况下,确定问题的本质和起因,明确咨询目标,找出各种可行方案。
5.系统分析方法来源于系统科学。
6.系统科学是20世纪40年代以后迅速发展起来的一个横跨各个学科的新的科学部门,它从系统的着眼点或角度去考察和研究整个客观世界,为人类认识和改造世界提供了科学的理论和方法。
7.它的产生和发展标志着人类的科学思维由主要以“实物为中心”逐渐过渡到以“系统为中心”,是科学思维的一个划时代突破。